Neuroscience
-
Microinjection of morphine into the periaqueductal gray (PAG) produces antinociception. In vitro slice recordings indicate that all PAG neurons are sensitive to morphine either by direct inhibition or indirect disinhibition. We tested the hypothesis that all PAG neurons respond to opioids in vivo by examining the extracellular activity of PAG neurons recorded in lightly anesthetized and awake rats. ⋯ Changes in activity caused by morphine were surprisingly modest (a median increase from 0.7 to 1.3Hz). The small inconsistent effects of morphine are in stark contrast to the large changes produced by morphine on the activity of rostral ventromedial medulla (RVM) neurons or the widespread inhibition and excitation of PAG neurons treated with opioids in in vitro slice experiments. The relatively modest effects of morphine in the present study suggest that morphine produces antinociception by causing small changes in the activity of many PAG neurons.
-
We examined the contribution of the sodium channel isoform Nav1.8 to retinal function using the specific blocker A803467. We found that A803467 has little influence on the electroretinographic (ERG) a- and b-waves, but significantly reduces the oscillatory potentials to 40-60% of their original amplitude, with significant changes in implicit time in the rod-driven range. To date, only two cell types were found in mouse to express Nav1.8; the starburst amacrine cells (SBAC), and a subtype of retinal ganglion cells (RGC). ⋯ We have previously shown that RGCs have only a minor contribution to the oscillatory potentials (Smith et al., 2014), therefore suggesting that starburst amacrine cells might be a significant contributor to this ERG component. Targeting SBACs with the cholinergic neurotoxin ethylcholine mustard aziridinium (AF64A) caused reduction in the amplitude of the OPs similar to A803467. Our results, both using the ERG and MEA recordings from retina ganglion cells, suggest that Nav1.8 plays a role in modulating specific aspects of the retinal physiology and that SBACs are a fundamental cellular contributor to the OPs in mice, a clear demonstration of the dichotomy between ERG b-wave and oscillatory potentials.
-
Huntingtin-associated protein 1 (HAP1) is a neuronal interactor with causatively polyglutamine (polyQ)-expanded huntingtin in Huntington's disease and also associated with pathologically polyQ-expanded androgen receptor (AR) in spinobulbar muscular atrophy (SBMA), being considered as a protective factor against neurodegenerative apoptosis. In normal brains, it is abundantly expressed particularly in the limbic-hypothalamic regions that tend to be spared from neurodegeneration, whereas the areas with little HAP1 expression, including the striatum, thalamus, cerebral neocortex and cerebellum, are targets in several neurodegenerative diseases. While the spinal cord is another major neurodegenerative target, HAP1-immunoreactive structures have yet to be determined there. ⋯ Double-immunostaining for HAP1 and AR demonstrated that more than 80% of neurons expressed both in the same areas. In contrast, HAP1 was specifically lacking in the lamina IX motoneurons with or without AR expression. The present study first demonstrated that HAP1 is abundantly expressed in spinal neurons of the somatosensory, viscerosensory, and autonomic regions but absent in somatomotor neurons, suggesting that the spinal motoneurons are, due to lack of putative HAP1 protectivity, more vulnerable to stresses in neurodegenerative diseases than other HAP1-expressing neurons probably involved in spinal sensory and autonomic functions.
-
To date, five AP-2 genes that encode AP-2α, β, γ, δ and ε have been identified in vertebrates and they have been reported to be key regulators of embryonic development. However, the role of AP-2 family members in the development of central nervous system (CNS) has not been characterized. ⋯ Gain-of-function experiments further revealed that misexpression of cAP-2α, but not cAP-2β, was able to induce the ectopic generation of Class A interneurons. Together, our studies indicated that AP-2 family members, AP-2α and AP-2β, have distinct functions in the regulation of dorsal interneuron development.
-
After peripheral nerve injury, transected fibers distal to the lesion are disconnected from the neuronal body. This results in target denervation but also massive stripping of the central synapses of axotomized motoneurons, disrupting spinal circuits. Even when axonal regeneration is successful, the non-specific target reinnervation and the limited rebuilding of spinal circuits impair functional recovery. ⋯ Treatment with the TrkB agonist at a low dose, but not at a high dose, prevented the decrease of excitatory glutamatergic synapses, and both doses increased the density of inhibitory synapses. TrkB inactivation counteracted only some of the positive effects exerted by exercise after nerve injury, such as maintenance of excitatory synapses surrounding motoneurons. Therefore, specific regimes of physical exercise are a better strategy to attenuate the alterations that motoneurons suffer after axotomy than pharmacological modulation of the TrkB pathway.