Neuroscience
-
Glutathione (GSH) deficiency has been identified as an early event in the progression of Parkinson's disease. However, the role of GSH in the etiology and pathogenesis of this neurodegenerative disorder is not well established. ⋯ In addition, high levels of tumor necrosis factor α (p<0.01), interleukins IL-1β p<0.01), IL-6 p<0.001) and nitric oxide p<0.01) were found in the treated animals compared to control groups, while no significant differences were found in IL-10 levels. These results suggest that transient GSH depletion can increase the susceptibility of SNpc to degeneration by promoting an inflammatory response and nitrosative stress, reinforcing the possible role of GSH unbalance, oxygen/nitrogen reactive species and neuroinflammation as causal factors on the degeneration of the SNpc.
-
We examined the contribution of the sodium channel isoform Nav1.8 to retinal function using the specific blocker A803467. We found that A803467 has little influence on the electroretinographic (ERG) a- and b-waves, but significantly reduces the oscillatory potentials to 40-60% of their original amplitude, with significant changes in implicit time in the rod-driven range. To date, only two cell types were found in mouse to express Nav1.8; the starburst amacrine cells (SBAC), and a subtype of retinal ganglion cells (RGC). ⋯ We have previously shown that RGCs have only a minor contribution to the oscillatory potentials (Smith et al., 2014), therefore suggesting that starburst amacrine cells might be a significant contributor to this ERG component. Targeting SBACs with the cholinergic neurotoxin ethylcholine mustard aziridinium (AF64A) caused reduction in the amplitude of the OPs similar to A803467. Our results, both using the ERG and MEA recordings from retina ganglion cells, suggest that Nav1.8 plays a role in modulating specific aspects of the retinal physiology and that SBACs are a fundamental cellular contributor to the OPs in mice, a clear demonstration of the dichotomy between ERG b-wave and oscillatory potentials.
-
After peripheral nerve injury, transected fibers distal to the lesion are disconnected from the neuronal body. This results in target denervation but also massive stripping of the central synapses of axotomized motoneurons, disrupting spinal circuits. Even when axonal regeneration is successful, the non-specific target reinnervation and the limited rebuilding of spinal circuits impair functional recovery. ⋯ Treatment with the TrkB agonist at a low dose, but not at a high dose, prevented the decrease of excitatory glutamatergic synapses, and both doses increased the density of inhibitory synapses. TrkB inactivation counteracted only some of the positive effects exerted by exercise after nerve injury, such as maintenance of excitatory synapses surrounding motoneurons. Therefore, specific regimes of physical exercise are a better strategy to attenuate the alterations that motoneurons suffer after axotomy than pharmacological modulation of the TrkB pathway.
-
Endocannabinoids and somatostatin play critical roles in several pathophysiological conditions via binding to different receptor subtypes. Cannabinoid receptor 1 (CB1R) and somatostatin receptors (SSTRs) are expressed in several brain regions and share overlapping functions. Whether these two prominent members of G-protein coupled receptor (GPCR) family interact with each other and constitute a functional receptor complex is not known. ⋯ Furthermore, concurrent receptor activation led to preferential formation of SSTR5 homodimer and dissociation of CB1R homodimer. We also discovered that second messenger cyclic adenosine monophosphate and downstream signaling pathways were modulated in a SSTR5-dominant and concentration-dependent manner in the presence of receptor specific agonist. In conclusion, with predominant role of SSTR5, the functional consequences of crosstalk between SSTR5 and CB1R resulting in the regulation of receptor trafficking and signal transduction pathways open new therapeutic avenue in cancer biology and excitotoxicity.
-
To date, five AP-2 genes that encode AP-2α, β, γ, δ and ε have been identified in vertebrates and they have been reported to be key regulators of embryonic development. However, the role of AP-2 family members in the development of central nervous system (CNS) has not been characterized. ⋯ Gain-of-function experiments further revealed that misexpression of cAP-2α, but not cAP-2β, was able to induce the ectopic generation of Class A interneurons. Together, our studies indicated that AP-2 family members, AP-2α and AP-2β, have distinct functions in the regulation of dorsal interneuron development.