Neuroscience
-
The sodium bicarbonate co-transporter (NBC) is the major bicarbonate-dependent acid-base transporter in mammalian astrocytes and has been implicated in ischemic brain injury. A malfunction of astrocytes could have great impact on the outcome of stroke due to their participation in the formation of blood-brain barrier, synaptic transmission, and electrolyte balance in the human brain. Nevertheless, the role of NBC in the ischemic astrocyte death has not been well understood. ⋯ Using IS and a generic NBC blocker S0859, we have studied the involvement of NBC in IS-induced human astrocytes death. Our results show that a 30μM S0859 induced a 97.5±1.6% (n=10) cell death in IS-treated astrocytes, which is significantly higher than 43.6±4.5%, (n=10) in the control group treated with IS alone. In summary, a NBC blocker exaggerates IS-induced cell death, suggesting that NBC activity is essential for astrocyte survival when exposed to ischemic penumbral environment.
-
This study sought to determine the effects of chronic low back pain (LBP) on the cortical evoked potentials, muscle activation, and kinematics of postural responses to perturbations of standing balance. Thirteen subjects with chronic, recurrent, non-specific LBP and 13 subjects without LBP participated. The subjects responded to unpredictably timed postural perturbations while standing on a platform that randomly rotated either "toes up" or "toes down". ⋯ For the subjects with LBP, CoM displacements significantly and positively correlated with knee displacements as well as activity interference and fear scores. The P2 potentials significantly and negatively correlated with CoM displacements as well as activity interference, catastrophizing, and fear scores. These results demonstrate that people with LBP exhibit altered late-phase cortical processing of postural perturbations concomitant with altered kinematic and muscle responses, and these cortical and postural response characteristics correlate with each other as well as with clinical reports of pain-related fears and activity interference.
-
The fingertip somatotopy in BA1 and BA3b of monkeys exhibits characteristic differences with a more discrete separation of the body parts in BA3b and a continuous orientation column-like structure in BA1. We present evidence for similar differences in the human somatotopy using BOLD fMRI for the investigations. Though the variability between the individual maps was large, we found a group-wide somatotopic representation in BA3b and BA1. ⋯ The degree of fine-scale detail mapping was improved if valid surface distances instead of 3D Euclidean distances were applied. A further improvement was achieved by mapping the distances between all neighboring fingertips instead of only the outer fingertips. Taking into account all optimizations we found mirror symmetry of the somatotopy with respect to the interhemispheric gap.
-
The medial prefrontal cortex (mPFC) plays a key role in higher functions such as memory and attention. In order to demonstrate sensory responses in the mPFC, we used electrophysiological recordings of urethane-anesthetized rats to record somatosensory-evoked potentials (SEPs) or auditory-evoked potentials (AEPs) elicited by whisker deflections and click stimulation, respectively. Contralateral whisker stimulation or auditory stimuli were also applied to study sensory interference in the mPFC. ⋯ Results obtained from retrograde tracer injections in the dorsal and ventral regions of the mPFC indicated that somatosensory and auditory sensory inputs may arrive at the dorsal mPFC through secondary sensory cortical areas, and through the insular and temporal cortical areas. The ventral mPFC may receive sensory information through the strong anatomical connections between the dorsal and ventral mPFC areas. In conclusion, results suggest mPFC plays an important role in sensory processing, which may have important implications in attentional and memory processes.
-
Epidemiological studies report that infarct size is decreased and stroke outcomes are improved in young females when compared to males. However, mechanistic insight is lacking. We posit that sex-specific differences in glial cell functions occurring immediately after ischemic stroke are a source of dichotomous outcomes. ⋯ When compared to sham, only male mice exhibited an increase in CD11b immunoreactivity after MCA occlusion (P=0.006). We posit that a sex difference in the presence of constitutive CD11b has a role in determining male and female microglia phagocytic responses to ischemia. Taken together, these findings are critical to understanding potential sex differences in glial physiology as well as stroke pathobiology which are foundational for the development of future sex-specific stroke therapies.