Neuroscience
-
The noradrenergic system is crucial for several activities in the body, including the modulation of pain. As the major producer of noradrenaline (NA) in the central nervous system (CNS), the Locus Coeruleus (LC) is a nucleus that has been studied in several pain conditions, mostly due to its strategic location. ⋯ The main goal of this review is to bring together the data available regarding the noradrenergic system in relation to pain, particularly focusing on the ascending and descending LC projections in different conditions. How such findings influence our understanding of these conditions is also discussed.
-
We have witnessed an accelerated growth of photonics technologies in recent years to enable not only monitoring the activity of specific neurons, while animals are performing certain types of behavior, but also testing whether specific cells, circuits, and regions are sufficient or necessary for initiating, maintaining, or altering this or that behavior. Compared to other sensory systems, however, such as the visual or olfactory system, photonics applications in pain research are only beginning to emerge. One reason pain studies have lagged behind is that many of the techniques originally developed cannot be directly implemented to study key relay sites within pain pathways, such as the skin, dorsal root ganglia, spinal cord, and brainstem. ⋯ We review a number of strategies to circumvent these challenges, by delivering light into, and collecting it from the different key sites to unravel how nociceptive signals are encoded at each level of the neuraxis. We conclude with an outlook on novel imaging modalities for label-free chemical detection and opportunities for multimodal interrogation in vivo. While many challenges remain, these advances offer unprecedented opportunities to bridge cellular approaches with context-relevant behavioral testing, an essential step toward improving translation of basic research findings into clinical applications.
-
This review addresses the fundamental question of how we first experience pain, at the beginning of our lives. The brain is activated by peripheral tissue damaging stimulation from birth, but unlike other sensory systems, the pain system in healthy individuals cannot rely upon prolonged activity-dependent shaping through repeated noxious stimulation. Considering the importance of pain, remarkably little is known about when and how nociceptive cortical network activity characteristic of the mature adult brain develops. ⋯ Since this developing brain connectome is necessary, if not sufficient, for pain experience, we discuss the structural and functional development of cortical and subcortical networks that contribute to this network. We then review specific information on the development of nociceptive processing in the infant brain, considering evidence from neurophysiological and hemodynamic measures separately, as the two are not always consistent. Finally we highlight areas that require further research and discuss how information gained from laboratory animal models will greatly increase our understanding in this area.
-
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. ⋯ Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
-
Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system. It is generally chronic and challenging to treat. The recommended pharmacotherapy for neuropathic pain includes the use of some antidepressants, such as tricyclic antidepressants (TCAs) (amitriptyline…) or serotonin and noradrenaline re-uptake inhibitors (duloxetine…), and/or anticonvulsants such as the gabapentinoids gabapentin or pregabalin. ⋯ Gabapentinoid treatment may also indirectly impact on neuroimmune actors, like proinflammatory cytokines. These drugs are effective against neuropathic pain both with acute administration at high dose and with repeated administration. This review focuses on mechanistic knowledge concerning chronic antidepressant treatment and gabapentinoid treatment in a neuropathic pain context.