Neuroscience
-
Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. ⋯ Both DA D2 antagonists and 5HT increased the firing frequency of AVP-responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure.
-
Vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) have distinct distributions in the cochlear nucleus that correspond to sources of the labeled terminals. VGLUT1 is mainly associated with terminals of auditory nerve fibers, whereas VGLUT2 is mainly associated with glutamatergic terminals deriving from other sources that project to the cochlear nucleus (CN), including somatosensory and vestibular terminals. Previous studies in guinea pig have shown that cochlear damage results in a decrease of VGLUT1-labeled puncta and an increase in VGLUT2-labeled puncta. ⋯ In all unilaterally deafened animals, VGLUT1 density was decreased in CN regions that receive auditory nerve fiber terminals, i.e., in the deep layer of the dorsal cochlear nucleus (DCN), in the interstitial region where the auditory nerve enters the CN, and in the magnocellular region of the antero- and posteroventral CN. In contrast, density of VGLUT2 expression was upregulated in the fusiform cell layer of the DCN and in the granule cell lamina, which are known to receive somatosensory and vestibular terminals. These results show that a cochlear insult induces cross-modal compensation in the cochlear nucleus of the mouse, confirming previous findings in guinea pig, and that these changes are not dependent on the occurrence of spiral ganglion neuron degeneration.
-
High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. ⋯ HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses.
-
When chronically silenced, cortical and hippocampal neurons homeostatically upregulate excitatory synaptic function. However, the subcellular position of such changes on the dendritic tree is not clear. ⋯ Our analysis indicates that young rat cortical neurons globally scale AMPA receptor-mediated currents, while mature hippocampal neurons do not, revealing distinct homeostatic strategies between brain regions and developmental stages. The DFI presents a useful tool for mapping the dendritic origin of synaptic currents and the location of synaptic plasticity changes.
-
The inspiratory motor outputs are larger in the intercostal muscles positioned at more rostral segments. To obtain further insights into the involvement of the spinal interneurons in the generation of this rostrocaudal gradient, the respiratory-related neuronal activities were optically recorded from various thoracic segments in brainstem-spinal cord preparations from 0- to 2-day-old rats. The preparation was stained with a voltage-sensitive dye, and the optical signals from about 2.5s before to about 7.7s after the peak of the C4 inspiratory discharge were obtained. ⋯ The respiratory signals were observed not only in the motoneuron areas but also in areas medial to the motoneuron areas, where interneurons should exist; these were referred to as 'interneuron areas'. The upper thoracic segments showed significantly larger inspiratory-related signals than the lower thoracic segments in both the motoneuron and interneuron areas. These results suggest that the inspiratory interneurons in the thoracic spinal cord play a role in the generation of the rostrocaudal gradient in the inspiratory intercostal muscle activity.