Neuroscience
-
The neuroimmune-endocrine dysfunction has been accepted as one of fundamental mechanisms contributing to the pathophysiology of psychiatric disorders including depression and anxiety. In this study, we aimed to evaluate the involvement of hypothalamic-pituitary-adrenal (HPA) axis, interleukin-1β, and nitrergic system in mediating the negative behavioral impacts of juvenile social isolation stress (SIS) in male mice. We also investigated the possible protective effects of lithium on behavioral and neurochemical changes in socially isolated animals. ⋯ Unlike the neutralizing effects of l-arginine (NO precursor), administration of l-NAME (3 mg/kg) and aminoguanidine (20 mg/kg) potentiated the positive effects of lithium on the behavioral and neurochemical profile of isolated mice. In conclusion, our results revealed that juvenile SIS-induced behavioral deficits are associated with abnormalities in HPA-immune function. Also, we suggest that alleviating effects of lithium on behavioral profile of isolated mice may be partly mediated by mitigating the negative impact of NO on HPA-immune function.
-
Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. ⋯ Both DA D2 antagonists and 5HT increased the firing frequency of AVP-responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure.
-
Vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) have distinct distributions in the cochlear nucleus that correspond to sources of the labeled terminals. VGLUT1 is mainly associated with terminals of auditory nerve fibers, whereas VGLUT2 is mainly associated with glutamatergic terminals deriving from other sources that project to the cochlear nucleus (CN), including somatosensory and vestibular terminals. Previous studies in guinea pig have shown that cochlear damage results in a decrease of VGLUT1-labeled puncta and an increase in VGLUT2-labeled puncta. ⋯ In all unilaterally deafened animals, VGLUT1 density was decreased in CN regions that receive auditory nerve fiber terminals, i.e., in the deep layer of the dorsal cochlear nucleus (DCN), in the interstitial region where the auditory nerve enters the CN, and in the magnocellular region of the antero- and posteroventral CN. In contrast, density of VGLUT2 expression was upregulated in the fusiform cell layer of the DCN and in the granule cell lamina, which are known to receive somatosensory and vestibular terminals. These results show that a cochlear insult induces cross-modal compensation in the cochlear nucleus of the mouse, confirming previous findings in guinea pig, and that these changes are not dependent on the occurrence of spiral ganglion neuron degeneration.
-
Circadian rhythms in mammals are regulated by a system of circadian oscillators that includes a light-entrainable pacemaker in the suprachiasmatic nucleus (SCN) and food-entrainable oscillators (FEOs) elsewhere in the brain and body. In nocturnal rodents, the SCN promotes sleep in the day and wake at night, while FEOs promote an active state in anticipation of a predictable daily meal. For nocturnal animals to anticipate a daytime meal, wake-promoting signals from FEOs must compete with sleep-promoting signals from the SCN pacemaker. ⋯ Changes in either direction were concurrent with locomotion, were not specific to food anticipation, and were not sustained during longer pauses. Reduced FOS indicates a net suppression of SCN activity that may depend on the intensity or duration of locomotion. The timing of changes in SCN activity relative to locomotion suggests that any effect of FEOs on SCN output is mediated indirectly, by feedback from neural or systemic correlates of locomotion.
-
Reactivation of consolidated memory initiates a memory reconsolidation process, during which the reactivated memory is susceptible to strengthening, weakening or updating. Therefore, effective interference with the memory reconsolidation process is expected to be an important treatment for drug addiction. The nucleus accumbens (NAc) has been well recognized as a pathway component that can prevent drug relapse, although the mechanism underlying this function is poorly understood. ⋯ Further, bilateral NAc-shell infusion of MK 801 and SCH 23390, but not raclopride or propranolol, prior to addictive memory reconsolidation, decreased Zif 268 and Fos B expression in the entire reward circuit, except for the amygdala, and effectively disturbed subsequent CPP-related behavior. In summary, N-methyl-d-aspartate (NMDA) and dopamine D1 receptors, but not dopamine D2 or β adrenergic receptors, within the NAc-shell, may regulate Zif 268 and Fos B expression in most brain nuclei of the reward circuit after cocaine memory reactivation. These findings indicated that the NAc played a key role in regulating addictive memory reconsolidation by influencing the function of the entire addictive memory network.