Neuroscience
-
Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. ⋯ Both DA D2 antagonists and 5HT increased the firing frequency of AVP-responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure.
-
Circadian rhythms in mammals are regulated by a system of circadian oscillators that includes a light-entrainable pacemaker in the suprachiasmatic nucleus (SCN) and food-entrainable oscillators (FEOs) elsewhere in the brain and body. In nocturnal rodents, the SCN promotes sleep in the day and wake at night, while FEOs promote an active state in anticipation of a predictable daily meal. For nocturnal animals to anticipate a daytime meal, wake-promoting signals from FEOs must compete with sleep-promoting signals from the SCN pacemaker. ⋯ Changes in either direction were concurrent with locomotion, were not specific to food anticipation, and were not sustained during longer pauses. Reduced FOS indicates a net suppression of SCN activity that may depend on the intensity or duration of locomotion. The timing of changes in SCN activity relative to locomotion suggests that any effect of FEOs on SCN output is mediated indirectly, by feedback from neural or systemic correlates of locomotion.
-
High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. ⋯ HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses.
-
The inspiratory motor outputs are larger in the intercostal muscles positioned at more rostral segments. To obtain further insights into the involvement of the spinal interneurons in the generation of this rostrocaudal gradient, the respiratory-related neuronal activities were optically recorded from various thoracic segments in brainstem-spinal cord preparations from 0- to 2-day-old rats. The preparation was stained with a voltage-sensitive dye, and the optical signals from about 2.5s before to about 7.7s after the peak of the C4 inspiratory discharge were obtained. ⋯ The respiratory signals were observed not only in the motoneuron areas but also in areas medial to the motoneuron areas, where interneurons should exist; these were referred to as 'interneuron areas'. The upper thoracic segments showed significantly larger inspiratory-related signals than the lower thoracic segments in both the motoneuron and interneuron areas. These results suggest that the inspiratory interneurons in the thoracic spinal cord play a role in the generation of the rostrocaudal gradient in the inspiratory intercostal muscle activity.
-
The neuroimmune-endocrine dysfunction has been accepted as one of fundamental mechanisms contributing to the pathophysiology of psychiatric disorders including depression and anxiety. In this study, we aimed to evaluate the involvement of hypothalamic-pituitary-adrenal (HPA) axis, interleukin-1β, and nitrergic system in mediating the negative behavioral impacts of juvenile social isolation stress (SIS) in male mice. We also investigated the possible protective effects of lithium on behavioral and neurochemical changes in socially isolated animals. ⋯ Unlike the neutralizing effects of l-arginine (NO precursor), administration of l-NAME (3 mg/kg) and aminoguanidine (20 mg/kg) potentiated the positive effects of lithium on the behavioral and neurochemical profile of isolated mice. In conclusion, our results revealed that juvenile SIS-induced behavioral deficits are associated with abnormalities in HPA-immune function. Also, we suggest that alleviating effects of lithium on behavioral profile of isolated mice may be partly mediated by mitigating the negative impact of NO on HPA-immune function.