Neuroscience
-
Following brain ischemia reperfusion (IR), the dramatic increase in adenosine activates A2AR to induce further neuronal damage. Noteworthy, A2A antagonists have proven efficacious in halting IR injury, however, the detailed downstream signaling remains elusive. To this end, the present study aimed to investigate the possible involvement of phospho-extracellular signal-regulated kinase (pERK1/2) pathway in mediating protection afforded by the central A2A blockade. ⋯ Consequent to pERK1/2 inhibition, reduced hippocampal microglial activation, glial tumor necrosis factor-alpha (TNF-α) and brain-derived neurotropic factor (BDNF) expression, glutamate (Glu), inducible nitric oxide synthase (iNOS) and thiobarbituric acid reactive substances (TBARS) were evident in animals receiving SCH58261. Additionally, the anti-inflammatory cytokine interleukin-10 (IL-10) increased following nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Taken all together, these events suppressed apoptotic pathways via a reduction in cytochrome c (Cyt. c) as well as caspase-3 supporting a crucial role for pERK1/2 inhibition in consequent reduction of inflammatory and excitotoxic cascades as well as correction of the redox imbalance.
-
Temporal lobe epilepsy in human and animals is attributed to alterations in brain function especially hippocampus formation. Changes in synaptic activity might be causally related to the alterations during epileptogenesis. Transient receptor potential vanilloid 1 (TRPV1) as one of the non-selective ion channels has been shown to be involved in synaptic transmission. ⋯ SE induced an upregulation of TRPV1 mRNA and protein content in the whole hippocampal extract, as well as its distribution in both CA1 and CA3 regions. Activation and inhibition of TRPV1 receptors (via capsaicin 1μM and capsazepine 10μM, respectively) did not influence basal synaptic transmission in CA1 and CA3 regions of control slices, however, capsaicin increased and capsazepine decreased synaptic transmission in both regions in tissues from epileptic animals. Taken together, these findings suggest that a higher expression of TRPV1 in the epileptic condition is accompanied by alterations in basal synaptic transmission.
-
A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. ⋯ In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs.
-
Alzheimer's disease (AD) is one of the most common causes of dementia. Although the exact mechanisms of AD are not entirely clear, the impairment in adult hippocampal neurogenesis has been reported to play a role in AD. To assess the relationship between AD and neurogenesis, we studied APP/PS1/nestin-green fluorescent protein (GFP) triple transgenic mice, a well-characterized mouse model of AD, which express GFP under the control of the nestin promoter. ⋯ However, the number of maturate neurons (NeuN) was not significantly different between AD mice and wild-type controls, and NeuN changed only slightly with age. By Golgi-Cox staining, the morphologies of dendrites were observed, and significant differences existed between AD mice and wild-type controls. These results suggest that AD has a far-reaching influence on the regulation of adult hippocampal neurogenesis, leading to a gradual decrease in the generation of neural progenitors (NPCs), and inhibition of the differentiation and maturation of neurons.
-
Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for the human disease multiple sclerosis (MS), a demyelinating and neurodegenerative pathology of the central nervous system. Both diseases share physiopathological and clinical characteristics, mainly associated with a neuroinflammatory process that leads to a set of motor, sensory, and cognitive symptoms. In MS, gray matter atrophy is related to the emergence of cognitive deficits and contributes to clinical progression. ⋯ In the present work we show the presence of region-specific microglia and astrocyte activation in the FrCx, during the first hours of acute EAE onset. It is accompanied by the production of the pro-inflammatory cytokines IL-6 and TNF-α, in the absence of detectable leukocyte infiltration. These findings expand previous studies showing presynaptic neural dysfunction occurring at the FrCx and might contribute to the understanding of the mechanisms involved in the genesis and prevalence of common MS symptoms.