Neuroscience
-
Retraction Of Publication
WITHDRAWN: Auditory Surprise Model Based on Pattern Retrieval from the Past Observation.
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the authors. The authors regrets that the reason for withdrawal is due to an disagreement in authorship and in scope of data disclosure. The authors apologize to the readers for this unfortunate error.
-
Although recent studies have reported that gamma-aminobutyric acid (GABA) neurons in the parafacial zone (PZ) of the rostral medulla are needed for the induction of slow-wave sleep (SWS) and that the PZ is a medullary SWS-promoting center, it remains unknown whether the PZ contains SWS-active or sleep-promoting neurons. In the present study, a total of 125 neurons were recorded, for the first time, in non-anesthetized, head-restrained mice during the complete wake-sleep cycle throughout the PZ of the rostral medulla. The vast majority (87.2%) of the neurons displayed increased activity during both wakefulness (W) and paradoxical (or rapid eye movement) sleep (PS) compared to during SWS (W/PS-active neurons) and a few (8.0%) discharged phasically and selectively during PS (PS-active neurons), but none discharged maximally during SWS (SWS-active neurons) or displayed a higher rate of spontaneous discharge during both SWS and PS than during W (SWS/PS-active neurons). These findings do not support the view that the GABAergic PZ is a medullary SWS-promoting center.
-
Recently, it has been shown that short-term monocular deprivation in adult humans can temporally shift the ocular dominance in favor of the deprived eye. It is not clear whether this form of ocular dominance plasticity can be explained by cortical contrast adaptation, which is known to be orientationally selective. Here we show that if only one eye is deprived of a limited band of orientations for a short period of 2.5 h, the deprived eye's contribution to binocular function at all orientations rather than just those corresponding to the previously deprived orientations is strengthened. This isotropic enhancement is quite different from the orientational enhancement previously reported and suggests a separate neuroplastic mechanism specific to binocular function.
-
Ubiquitin-proteasome system (UPS) has emerged as major molecular mechanism which modulates synaptic plasticity. However, very little is known about what happens if this system fails during postnatal brain development. In the present study, MG132 was administered intracerebroventricularly in BALB/c mice pups at postnatal day one (P1), a very crucial period for synaptogenesis. ⋯ Real-Time PCR analyses showed significant increase in hippocampal expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit glutamate A1 (GluA1), but no change in the brain-derived neurotrophic factor (Bdnf) expression in MG132 mice. Western blot analyses showed decreased levels of pThr286-CaMKIIα:CaMKIIα and pSer133-CREB:CREB ratio but increased pro:mature BDNF ratio in the hippocampus of MG132 mice. Taken together, postnatal proteasome inhibition could lead to accumulation of intracellular amyloid-β protein aggregates, which mediate hippocampus-dependent spatial memory impairments in adult mice.
-
Hypertension is a major risk factor for stroke, which is one of the leading global causes of death. In the search for new and effective therapeutic targets in stroke research, we need to understand the influence of hypertension in the vasculature following stroke. We used Affymetrix whole-transcriptome expression profiling as a tool to address gene expression differences between the occluded and non-occluded middle cerebral arteries (MCAs) from spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats after transient middle cerebral artery occlusion (tMCAO), to provide clues about the pathological mechanisms set in play after stroke. ⋯ Thus these data suggest that Ccl2, Edn1, Tgfβ2, Olr1 and Serpine1 may be possible mediators of the vascular changes in the occluded MCAs from both SHRs and WKY rats after tMCAO. The aforementioned genes possess biological functions that are consistent with early stroke injuries. In conclusion, these genes may be potential targets in future strategies for acute stroke treatments that can be used in patients with and without hypertension.