Neuroscience
-
One of the earliest activities expressed within the developing central nervous system is a widely propagating wave-like activity, which we referred to as the depolarization wave. Despite considerable consensus concerning the global features of the activity, its physiological role is yet to be clarified. ⋯ Chronic inhibition of the depolarization wave had no significant effect on the developmental time course, amplitude, and spatial distribution of monosynaptic excitatory postsynaptic potentials in the first-order nuclei of the vagal sensory pathway (the nucleus of the tractus solitarius (NTS) and the contralateral non-NTS region), but reduced polysynaptic responses in the higher-order nucleus (the parabrachial nucleus). These results suggest that the depolarization wave plays an important role in the initial process of functional synaptic expression in the brainstem, especially in the higher-order nucleus of the cranial sensory pathway.
-
Excessive Glutamate (Glu) release may trigger excitotoxic cellular death by the activation of intracellular signaling pathways that transduce extracellular signals to the cell nucleus, which determines the onset of a death program. One such signaling pathway is the mitogen-activated protein kinases (MAPK), which is involved in both survival and cell death. Experimental evidences from the use of specific inhibitors supports the participation of some MAPK pathway components in the excitotoxicity mechanism, but the complete process of this activation, which terminates in cell damage and death, is not clearly understood. ⋯ Transcriptional changes were also investigated in 98 components of the MAPK pathway that are associated with cell damage. These results are an evidence of that repetitive use of MSG, in neonatal rats, induces cell damage-associated transcriptional changes of MAPK components, that might reflect a differential stage of both biochemical and molecular brain maturation. This work also suggests that some of the proteins evaluated such as phosphorylated retinoblastoma (pRb) protein, which was up-regulated, could regulate the response to excitotoxic through modulation of the process of re-entry into the cell cycle in the hippocampus of rats treated with MSG.
-
The primary sensory cortex exhibits neuroplastic changes responding to sensory disturbances, and GABAergic synaptic transmission plays a critical role in the regulation of plasticity. The insular cortex (IC) integrates orofacial nociceptive signals conveyed via myelinated Aδ- and unmyelinated C-fibers. However, it has been unknown whether a disturbance of nociceptive inputs, such as a deletion of the peripheral nerves, alters GABAergic local circuit in IC. ⋯ These results suggest that capsaicin treatment depresses IPSCs via a postsynaptic mechanism. To confirm this possibility, the variance-mean analysis of unitary IPSCs was employed and we found that quantal size of GABAergic synaptic transmission was smaller in capsaicin-treated rats than in sham-treated rats. These results suggest that ablation of C-fibers induces plastic changes in GABAergic synaptic transmission by decreasing postsynaptic GABAA receptor-mediated conductance, which is a possible mechanism of the facilitative excitation in IC of capsaicin-treated rats.
-
Bumetanide is a selective inhibitor of the Na+-K+-Cl--co-transporter 1(NKCC1). We studied whether bumetanide could affect axonal growth and behavioral outcome in stroke rats. Adult male Wistar rats were randomly assigned to four groups: sham-operated rats treated with vehicle or bumetanide, and ischemic rats treated with vehicle or bumetanide. ⋯ Bumetanide treatment also decreased the expressions of NKCC1 and Nogo-A, increased the expressions of KCC2 and BDNF in the perilesional cortex and enhanced the synaptic plasticity in the denervated cervical spinal cord after cerebral ischemia. The behavioral performance of ischemic rats was significantly improved by bumetanide. In conclusion, bumetanide promoted post-stroke axonal sprouting together accompanied by an improved behavioral outcome possibly through restoring and maintaining neuronal chloride homeostasis and creating a recovery-promoting microenvironment by overcoming the axonal growth inhibition encountered after cerebral ischemia in rats.
-
Hippocampal neurogenesis and associated cognitive behaviors are regulated by a number of factors including stress, inflammation, and exercise. However, the interplay between these factors remains relatively unexplored, especially across the lifespan. In the current study, the effect of social isolation stress during the adolescent period on neurogenesis and hippocampal-dependent cognitive behaviors was examined. ⋯ The results from the current study demonstrate that social isolation stress during adolescence followed by intra-hippocampal exposure to the pro-inflammatory cytokine IL-1β in early adulthood produces deficits in both spontaneous alternations and novel object recognition. Exercise attenuated deficits in neurogenesis and novel object recognition in mice that had been exposed to the 'dual-hit' of stress and neuroinflammation. These findings indicate that adolescence represents a key period of the lifespan during which external factors such as stress and exercise can impact on hippocampal development, and may alter the response to challenges such as neuroinflammation in later life.