Neuroscience
-
Little is known about how the central nervous system prepares postural responses differently in anticipated compared to non-anticipated perturbations. To investigate this, participants were exposed to translational and rotational perturbations presented in a blocked (anticipated) and a random (non-anticipated) design. The preparatory setting ('central set') was measured by H-reflexes, motor-evoked potentials (MEPs), and short-interval intracortical inhibition (SICI) shortly before perturbation onset in the soleus of 15 healthy adults. ⋯ As the SLR and MLR are organized at the spinal and the LLR at the cortical level, the preparatory setting seems to mainly influence cortically mediated postural responses. However, the modulation of the H-reflex before anticipated perturbations indicates that supraspinal centers adjusted Ia-afferent transmission for the soleus in a perturbation-specific manner. Intracortical inhibition was also modulated but differentiates to a lesser extent only between perturbation conditions and unperturbed stance.
-
Bumetanide is a selective inhibitor of the Na+-K+-Cl--co-transporter 1(NKCC1). We studied whether bumetanide could affect axonal growth and behavioral outcome in stroke rats. Adult male Wistar rats were randomly assigned to four groups: sham-operated rats treated with vehicle or bumetanide, and ischemic rats treated with vehicle or bumetanide. ⋯ Bumetanide treatment also decreased the expressions of NKCC1 and Nogo-A, increased the expressions of KCC2 and BDNF in the perilesional cortex and enhanced the synaptic plasticity in the denervated cervical spinal cord after cerebral ischemia. The behavioral performance of ischemic rats was significantly improved by bumetanide. In conclusion, bumetanide promoted post-stroke axonal sprouting together accompanied by an improved behavioral outcome possibly through restoring and maintaining neuronal chloride homeostasis and creating a recovery-promoting microenvironment by overcoming the axonal growth inhibition encountered after cerebral ischemia in rats.
-
The primary sensory cortex exhibits neuroplastic changes responding to sensory disturbances, and GABAergic synaptic transmission plays a critical role in the regulation of plasticity. The insular cortex (IC) integrates orofacial nociceptive signals conveyed via myelinated Aδ- and unmyelinated C-fibers. However, it has been unknown whether a disturbance of nociceptive inputs, such as a deletion of the peripheral nerves, alters GABAergic local circuit in IC. ⋯ These results suggest that capsaicin treatment depresses IPSCs via a postsynaptic mechanism. To confirm this possibility, the variance-mean analysis of unitary IPSCs was employed and we found that quantal size of GABAergic synaptic transmission was smaller in capsaicin-treated rats than in sham-treated rats. These results suggest that ablation of C-fibers induces plastic changes in GABAergic synaptic transmission by decreasing postsynaptic GABAA receptor-mediated conductance, which is a possible mechanism of the facilitative excitation in IC of capsaicin-treated rats.
-
Previous studies have shown that leptin resistance is a key feature that leads to gestational metabolic adaptions. We hypothesized that leptin sensitivity in the ventromedial nucleus of the hypothalamus (VMH) plays a critical role regulating gestational metabolic changes. In the present study, we generated a mouse model carrying ablation of the suppressor of cytokine signaling 3 (SOCS3) in steroidogenic factor-1 (SF1) cells, which include the VMH, in order to investigate whether increased leptin sensitivity in this neuronal population prevents at least part of the metabolic changes typically observed during gestation and lactation. ⋯ Unexpectedly, SF1 SOCS3 KO mice exhibited glucose intolerance during pregnancy. SF1 SOCS3 KO mice also presented a lower body weight (-3%; p < 0.05) during mid and late lactation, although food intake, litter size and offspring growth were not affected. Our findings suggest that increased leptin sensitivity in the VMH causes modest metabolic effects and is not sufficient to prevent major metabolic adaptations of pregnancy and lactation.