Neuroscience
-
The sensory systems in animals constantly monitor the environment and process salient and relevant features while subtracting background activity. This process requires continuous recalibration of neuronal gain based on recent history. Adaptation has been postulated to be the key mechanism by which neurons rapidly tune their response curves to represent the entire dynamic range of external inputs. ⋯ Neuronal adaptation is observed in all stages of sensory processing, from the whisker follicle through the brainstem and thalamus up to the barrel cortex. In this review, we discuss the intrinsic, synaptic and network mechanisms of adaptation such as short-term synaptic depression, inhibitory suppression, balance between excitation and inhibition as well as the role of cascading adaptation. Furthermore, we describe recent findings about the different intensity dependent adaptation properties in the two major somatosensory pathways and their possible implications about coding.
-
Early stress in the form of repetitive neonatal pain, in infants born very preterm, is associated with long-term dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and with poorer cognitive performance. Brain-derived neurotrophic factor (BDNF) which is important in synaptic plasticity and cognitive functions is reduced by stress. Therefore the BDNF Val66Met variant, which affects secretion of BDNF, may interact with early exposure to pain-related stress in children born very preterm, to differentially affect HPA regulation that in turn may be associated with altered cognitive performance. ⋯ In both boys and girls with the Met allele, higher salivary cortisol reactivity was correlated with lower IQ (r=-0.60; p=0.001) and poorer visual-motor integration (r=-0.48; p=0.008). Our findings show associations between lower BDNF availability (presence of the Met allele) and vulnerability to neonatal pain/stress in boys, but not girls. This exploratory study suggests new directions for research into possible mechanisms underlying how neonatal pain/stress is related to cognitive performance in children born very preterm.
-
Despite long-standing interest in the role of sex on human development, the functional consequences of fetal sex on early development are not well-understood. Here we explore the gestational origins of sex as a moderator of development. In accordance with the focus of this special issue, we examine evidence for a sex differential in vulnerability to prenatal and perinatal risks. ⋯ We consider models that implicate variation in maturation, placental functioning, and the neuroendocrine milieu as potential contributors. Many studies use sex as a control variable, some analyze and report main effects for sex, but those that report interaction terms for sex are scarce. As a result, the true scope of sex differences in vulnerability is unknown.
-
The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). ⋯ In this sense, factors that change central 5-HT levels may act as 'plasticity' rather than 'risk' factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk.
-
Thyroid hormones (THs) play an obligatory role in many fundamental processes underlying brain development and maturation. The developing embryo/fetus is dependent on maternal supply of TH. The fetal thyroid gland does not commence TH synthesis until mid gestation, and the adverse consequences of severe maternal TH deficiency on offspring neurodevelopment are well established. ⋯ Next, we consider and discuss whether and how processes related to maternal stress and stress biology may interact with and modify the effects of maternal thyroid function on offspring brain development. We synthesize several research areas and identify important knowledge gaps that may warrant further study. The scientific and public health relevance of this review relates to achieving a better understanding of the timing, mechanisms and contexts of thyroid programing of brain development, with implications for early identification of risk, primary prevention and intervention.