Neuroscience
-
Amyotrophic lateral sclerosis (ALS) is a devastating disease leading to degeneration of motor neurons and skeletal muscles, including those required for swallowing. Tongue weakness is one of the earliest signs of bulbar dysfunction in ALS, which is attributed to degeneration of motor neurons in the hypoglossal nucleus in the brainstem, the axons of which directly innervate the tongue. Despite its fundamental importance, dysphagia (difficulty swallowing) and strategies to preserve swallowing function have seldom been studied in ALS models. ⋯ Hypoglossal motor neuron survival, swallowing function, and hypoglossal motor output were assessed in Sprague-Dawley rats after intralingual injection of either CTB-SAP (25 g) or unconjugated CTB and SAP (controls) into the genioglossus muscle. CTB-SAP treated rats exhibited significant (p ≤ 0.05) deficits vs. controls in: (1) lick rate (6.0 ± 0.1 vs. 6.6 ± 0.1 Hz; (2) hypoglossal motor output (0.3 ± 0.05 vs. 0.6 ± 0.10 mV); and (3) hypoglossal motor neuron survival (398 ± 34 vs. 1018 ± 41 neurons). Thus, this novel, inducible model of hypoglossal motor neuron death mimics the dysphagia phenotype that is observed in ALS rodent models, and will allow us to study strategies to preserve swallowing function.
-
The Age-dependent Elevation of miR-335-3p Leads to Reduced Cholesterol and Impaired Memory in Brain.
MiR-335-3p, a neuron-enriched microRNA, has been reported to be involved in aging and age-related neurological diseases. However, the role of miR-335-3p in cholesterol metabolism of astrocytes, and whether it affects neuronal functions, particularly during aging process, largely remains unknown. In this study, we uncover that miR-335-3p is significantly increased in aged cultured astrocytes and aged hippocampal brains, accompanied by decreased cellular cholesterol and diminished expression of HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) and 3-hydroxy-3-methylglutaryl-CoA synthase-1 (HMGCS1), both step-limiting enzymes in cholesterol synthesis pathway. ⋯ More importantly, aged mice with miR-335-3p deficiency in hippocampal brains exhibit improved learning and memory, accompanied by enhanced levels of postsynaptic density protein 95 (PSD95). We further reveal that the level change of PSD95 is resulted from altered cholesterol metabolism. Our findings provide a novel insight into the regulatory role of miR-335-3p in cholesterol metabolism in astrocytes, and consequently cognitive functions during aging.
-
The insulin/insulin-like growth factor 1 (IGF1) signaling pathways are implicated in longevity and in progression of Alzheimer's disease. Previously, we showed that insulin-like growth factor 1 receptor (IGF1R) and downstream signaling transcripts are reduced in astrocytes in human brain with progression of Alzheimer's neuropathology and developed a model of IGF1 signaling impairment in human astrocytes using an IGF1R-specific monoclonal antibody, MAB391. Here, we have established a novel human astrocyte-neuron co-culture system to determine whether loss of astrocytic IGF1R affects their support for neurons. ⋯ Changes in transcripts involved in astrocyte energy metabolism were identified, particularly NDUFA2 and NDUFB6, which are related to complex I assembly. Loss of complex I activity in MAB391-treated astrocytes validated these findings. In conclusion, reduced IGF1 signaling in astrocytes impairs their support for neurons under conditions of stress and this is associated with defects in the mitochondrial respiratory chain in astrocytes.
-
The promotion of angiogenesis is a promising therapeutic strategy for ischemic stroke. Many long noncoding RNAs (lncRNAs) are related to angiogenesis following ischemic stroke. LncRNA small nucleolar RNA host gene 12 (SNHG12) was upregulated in oxygen-glucose deprivation (OGD)-exposed primary brain microvascular endothelial cells and in microvessel from middle cerebral artery occlusion (MCAO) animal brains. ⋯ Furthermore, we found that SNHG12 functioned as a competing endogenous RNA for miR-150 to regulate VEGF expression. Additionally, overexpression of SNHG12 improved the recovery of neurological function, reduced infarct volume and miR-150 expression, increased vascular density and VEGF expression in the infarct border zone of MCAO mice. In conclusion, SNHG12 promotes the angiogenesis following ischemic stroke via miR-150/VEGF pathway, which further clarified the mechanism of angiogenesis after ischemic stroke and provides a target for the treatment of this disease.
-
Peripheral inflammation often causes changes in mood and emergence of depressive behavior, and is characterized by a group of physical manifestations including lethargy, malaise, listlessness, decreased appetite, anhedonia, and fever. These behavioral changes are induced at the molecular level by pro-inflammatory cytokines like interleukin (IL)-1β, IL-6 and TNF-α. The basolateral amygdala (BLA) is a key brain region involved in mood and may mediate some of the behavioral effects of inflammation. ⋯ Lipopolysaccharide (250 μg/kg, i.p.) increased BLA firing rate acutely (<30 min) and persistently. The findings demonstrate a rapid effect of peripheral inflammation on BLA activity and suggest a link between BLA neuronal firing and triggering of behavioral consequences of peripheral inflammation. These findings are a first step toward understanding the neuronal basis of depressive behavior caused by acute peripheral inflammation.