Neuroscience
-
Clinical studies have reported lower effectivity of opioid drugs in therapy of neuropathic pain. Therefore, to determine the changes in endogenous opioid systems in this pain more precisely, we have studied the changes in the pain-related behavior on days 1, 14, and 28 following a chronic constriction injury (CCI) to the sciatic nerve in mice. In parallel, we have studied the changes of μ-(MOP), δ-(DOP) and κ-(KOP) receptors, proenkephalin (PENK) and prodynorphin (PDYN) mRNA levels, as well as GTPγS binding of opioid receptors on the ipsi- and contralateral parts of the spinal cord and thalamus on the 14th day following CCI, as on this day the greatest manifestation of pain-related behavior was observed. ⋯ In thalamus, a decrease was observed on the contralateral side for all opioid receptor ligands, especially for DOP ligand. A less pronounced decrease in GTPγS binding of spinal DOP ligands may indicate a weaker stimulation of ascending nociceptive pathways, which could explain the absence of decreased activity of DOP receptor ligands in neuropathy. These findings may suggest that drugs with a higher affinity for the DOP receptor will perform better in neuropathic pain.
-
Anxiety-related defensive behavior is controlled by a distributed network of brain regions and interconnected neural circuits. The dorsal raphe nucleus (DR), which contains the majority of forebrain-projecting serotonergic neurons, is a key brain region involved in fear states and anxiety-related behavior via modulation of this broad neural network. Evidence suggests that relaxin-3 neurons in the nucleus incertus (NI) may also interact with this network, however, the potential role of the NI in the control of anxiety-related defensive behavior requires further investigation. ⋯ Administration of caffeine and exposure to the EPM activated a broad network of brain regions involved in control of anxiety-like behaviors, including serotonergic neurons in the DR, as measured using c-Fos immunohistochemistry. However, only exposure to the EPM activated relaxin-3-containing neurons in the NI, and activation of these neurons was not correlated with changes in anxiety-like behavior. These data suggest activation of the NI relaxin-3 system is associated with expression of behavior in tests of anxiety, but may not be directly involved in the approach-avoidance conflict inherent in anxiety-related defensive behavior in rodents.
-
As one of the bisphosphonate derivatives, etidronate has proved to be beneficial to spatial learning and memory deficits caused by two-vessel occlusion (2-VO). In this study, the novel drug etidronate-zinc complex (Eti-Zn) was used to detect its role in synaptic plasticity and learning and memory functions in a rat model of 2-VO. Chronic cerebral hypoperfusion was induced by permanent occlusion of the common carotid artery bilaterally in adult Sprague-Dawley rats. ⋯ Moreover, Eti-Zn treatment reduced both the over-activation of microglia and the expressions of neuroinflammatory cytokines (TNF-α, IL-1β and IL-6) in the hippocampus. The increased NF-κB signaling pathway in the hippocampus of 2-VO rats was reversed after Eti-Zn treatment. In summary, these findings suggest that Eti-Zn could ameliorate the synaptic plasticity and cognitive impairments by reducing neuroinflammation in 2-VO model rats.
-
Nerve damage leads to the development of disabling neuropathic pain in susceptible individuals, where patients present with pain as well as co-morbid behavioral changes, such as anhedonia, decreased motivation and depression. In this study we evaluated whether radial maze behavioral disruptions and glia-cytokine-neuronal adaptations in the hippocampus occurred in individual rats after nerve injury. Exploration behavior and spatial memory were quantified using a radial maze task, while mechanical allodynia was assessed using von Frey testing. ⋯ The withdrawal from pellet-seeking was found to be concomitant with distinct glial-cytokine-neuronal adaptations within the contralateral ventral hippocampus, including; increased expression of IL-1β and MCP-1; astrocyte atrophy and decreased area in the dentate gyrus; reactive microglia and increased FosB/ΔFosB expression in the cornu ammonis subfield. Therefore, glial-cytokine-neuronal adaptations in the ventral hippocampus may mediate individual differences in radial maze behavior following CCI. Our data suggest that individual neuroimmune signatures play a significant role in divergent behavioral trajectories following nerve injury, toward functional recovery and coping, or the emergence of ongoing affective state disturbances.
-
The encoding, consolidation and retrieval of memories is a multifaceted process that depends strongly on the optimal level of arousal but high levels of arousal may trigger anxiety, which negatively impacts the memory processing by the brain. We investigated the role of CRH neurons in the central amygdala (CeA) for their capacity to modulate both, the anxiety-like behavior and hippocampus-dependent memory. First, we activated the CRH neurons in CeA using cre-dependent AAV-DREADD in CRH-cre mice. ⋯ The behavioral and memory effects were accompanied by increased c-Fos expression in the LC region. Pretreatment with CRH1 receptor antagonist antalarmin hydrochloride blocked the effects that were observed after the activation of the CeA projections to LC. Our findings highlight the role of CeA CRH neuronal population not only as a generator of anxiety but also demonstrate their role in the control of hippocampus-dependent memory.