Neuroscience
-
This study compared the effects of fatigue on corticospinal responsiveness in the upper- and lower-limb muscles of the same participants. Seven healthy males performed a 2-min maximal voluntary isometric contraction of the elbow flexors or knee extensors on four separate days. Electromyographic responses were elicited by nerve stimulation (maximal M-wave) in all sessions and by transcranial magnetic stimulation (motor-evoked potential; silent period) and spinal tract stimulation (cervicomedullary or thoracic motor-evoked potentials; silent period) in one session each per limb. ⋯ Sustained maximal contractions elicit different neurophysiological adjustments in upper- and lower-limb muscles. Specifically, motoneuronal excitability was reduced in biceps brachii, but not in rectus femoris, and this reduction required greater compensatory adjustments from the motor cortex. Therefore, changes in cortical and spinal excitability during sustained maximal exercise are likely specific to the muscle performing the task.
-
K-complexes are important transient bio-signal waveforms in sleep stage 2. Detecting k-complexes visually requires a highly qualified expert. In this study, an efficient method for detecting k-complexes from electroencephalogram (EEG) signals based on fractal and frequency features coupled with an ensemble model of three classifiers is presented. ⋯ Comparisons were also made with existing k-complexes detection approaches for which the same datasets were used. The results demonstrate that the proposed approach is efficient in identifying the k-complexes in EEG signals; it yields optimal results with a window size 0.5 s. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders.
-
The production of new neurons and their incorporation into preexisting neuronal circuits occur throughout adulthood in the olfactory bulb and the hippocampal dentate gyrus of the mammalian brain. To determine whether the adult-born neurons are engaged in the acquisition and retrieval of olfactory associative memory, we developed and validated a single-trial olfactory fear conditioning protocol in mice which allows to detect activation of newborn neurons during a specific episode of memory acquisition. Using c-Fos mapping of neuronal activity, we then examined the activation of new and preexisting neurons during training and testing sessions. ⋯ Activation of neurons in the dentate gyrus during memory retrieval was observed mainly in the suprapyramidal blade. In the olfactory bulb, 1.6-2.7% of newborn GCs marked with thymidine analogues (2, 4, and 6 weeks old) expressed c-Fos during memory retrieval, while in the dentate gyrus no newborn neurons were found among the c-Fos-positive cells. These data are consistent with the hypothesis that adult-born GCs of the olfactory bulb are less involved in odor-cued associative fear memory than in odor-cued operant behavior memory.
-
A stroke-like event follows seizures which may be responsible for the postictal state and a contributing factor to the development of seizure-induced brain abnormalities and behavioral dysfunction associated with epilepsy. Caffeine is the world's most popular drug with ∼85% of people in the USA consuming it daily. Thus, persons with epilepsy are likely to have caffeine in their body and brain during seizures. ⋯ Likewise, the specific A2A receptor antagonist, SCH-58261, mimicked caffeine by causing a significant drop in pre-seizure pO2 and the area and time below the severe hypoxic threshold. Moreover, the A2A receptor agonist, CGS-21680 was able to prevent the effect of both caffeine and SCH-58261 adding further evidence that caffeine is likely acting through the A2A receptor. Clinical tracking and investigations are needed to determine the effect of caffeine on postictal symptomology and blood flow in persons with epilepsy.
-
Low frequency phase synchronization is an essential mechanism of information communication among brain regions. In the infra-slow frequency range (<0.1 Hz), inter-regional phase lag is of importance for brain function (e.g., anti-phase between the default mode network and task positive network). However, the role of phase lag in cognitive processing remains unclear. ⋯ Inter-regional phase lag was modulated by the task at ascending and descending phases of the fMRI signal, suggesting a phase-dependent inter-regional relationship. Furthermore, phase lags between visual cortex and amygdala and between visual cortex and motor area were positively related to reaction time, indicating better task performance depends on both rapid emotional detection pathway and visual-motor pathway. Overall, inter-regional phase synchronization in the infra-slow frequency range is of important for effective information communication and cognitive performance.