Neuroscience
-
Alterations in central extended amygdala (EAc) function have been linked to anxiety, depression, and anxious temperament (AT), the early-life risk to develop these disorders. The EAc is composed of the central nucleus of the amygdala (Ce), the bed nucleus of the stria terminalis (BST), and the sublenticular extended amygdala (SLEA). Using a non-human primate model of AT and multimodal neuroimaging, the Ce and the BST were identified as key AT-related regions. ⋯ Triple-labeling immunofluorescence staining revealed that SST protein-expressing cell bodies are a small proportion of the total CeL and BSTL neurons and have considerable co-labeling with CRF. The SLEA exhibited strong SST mRNA and protein expression, suggesting a role for SST in mediating information transfer between the CeL and BSTL. These data provide the foundation for mechanistic non-human primate studies focused on understanding EAc function in neuropsychiatric disorders.
-
The medial prefrontal cortex (mPFC) is implicated in the rewarding effect of psychostimulants, although molecular mechanisms underlying the rewarding properties of stimulants in this region are poorly understood. Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are believed to be critical in this event. We thus in this study investigated changes in mGlu1/5 receptor expression and function in the rat mPFC in response to conditioned place preference (CPP) induced by amphetamine. ⋯ The mGlu1/5 agonist-stimulated Src kinase phosphorylation was also augmented in rats treated with amphetamine. These results demonstrate the sensitivity of mPFC mGlu1/5 receptors to amphetamine-induced CPP. Amphetamine conditioning results in the upregulation of mGlu1/5 receptor expression at subcellular and/or subsynaptic levels and mGlu1/5-mediated postreceptor signaling in mPFC neurons.
-
The parallel processing of chemical signals by the main olfactory system and the vomeronasal system has been known to control animal behavior. The physiological significance of peripheral parallel pathways consisting of olfactory sensory neurons and vomeronasal sensory neurons is not well understood. Here, we show complementary characteristics of the information transfer of the olfactory sensory neurons and vomeronasal sensory neurons. ⋯ In contrast, tonic firing of the vomeronasal sensory neurons was able to convey information about smaller stimuli changing slowly with longer cycles (>500 ms). Thus, the parallel pathways of the two types of sensory neurons can convey information about a wide range of dynamic stimuli. A combination of complementary characteristics of olfactory information transfer may enhance the synergy of the interaction between the main olfactory system and the vomeronasal system.
-
Day-to-day life involves the perception of events that resemble one another. For the sufficient encoding and correct retrieval of similar information, the hippocampus provides two essential cognitive processes. Pattern separation refers to the differentiation of similar input information, whereas pattern completion reactivates memory representations based on noisy or degraded stimuli. ⋯ In volumetry, we found a global hippocampal volume reduction. The deficits in pattern separation performance were best predicted by the DG (p = 0.029), whereas CA1 was highly predictive of recognition memory deficits (p < 0.001). These results corroborate the framework of a regional specialization of hippocampal functions involved in cognitive processing.
-
The hypothalamus has emerged as a novel neurogenic niche in the adult brain during the past decade. However, little is known about its regulation and the role hypothalamic neurogenesis might play in body weight and appetite control. High-fat diet (HFD) has been demonstrated to induce an inflammatory response and to alter neurogenesis in the hypothalamus and functional outcome measures, e.g. body weight. ⋯ HFD also increased the amount of microglia, which was counteracted by physical exercise. Physiologically, exercise increased food and fat intake but reduced HFD-induced body weight gain. These findings support the hypothesis that hypothalamic neurogenesis may represent a counter-regulatory mechanism in response to environmental or physiological insults to maintain energy balance.