Neuroscience
-
Transcranial photobiomodulation (PBM), which involves the application of low-intensity red to near-infrared light (600-1100 nm) to the head, provides neuroprotection in animal models of various neurodegenerative diseases. However, the absorption of light energy by the human scalp and skull may limit the utility of transcranial PBM in clinical contexts. We have previously shown that targeting light at peripheral tissues (i.e. "remote PBM") also provides protection of the brain in an MPTP mouse model of Parkinson's disease, suggesting remote PBM might be a viable alternative strategy for overcoming penetration issues associated with transcranial PBM. ⋯ Despite no direct irradiation of the head, 10 days of pre-conditioning with remote PBM significantly attenuated MPTP-induced loss of midbrain tyrosine hydroxylase-positive dopaminergic cells and mitigated the increase in FOS-positive neurons in the caudate-putamen complex. Interrogation of the midbrain transcriptome by RNA microarray and pathway enrichment analysis suggested upregulation of cell signaling and migration (including CXCR4+ stem cell and adipocytokine signaling), oxidative stress response pathways and modulation of the blood-brain barrier following remote PBM. These findings establish remote PBM preconditioning as a viable neuroprotective intervention and provide insights into the mechanisms underlying this phenomenon.
-
Radial glial cells (RGCs) are neuronal progenitors and function as scaffolds for neuronal radial migration in the developing cerebral cortex. These functions depend on a polarized radial glial scaffold, which is of fundamental importance for brain development. Lethal giant larvae 1 (Lgl1), a key regulator for cell polarity from Drosophila to mammals, plays a key role in tumorigenesis and brain development. ⋯ Additionally, the absence of Lgl1 led to severe abnormalities in RGCs, including hyperproliferation, impaired differentiation, and increased apoptosis. Lgl1Emx1 CKO mice also displayed deficiencies in anxiety-related behaviors. We concluded that Lgl1 is essential for RGC development and neural migration during cerebral cortex development.
-
Spino-cerebellar ataxia type 7 (SCA7) is a polyglutamine (polyQ) disorder characterized by neurodegeneration of the brain, cerebellum, and retina caused by a polyglutamine expansion in ataxin7. The presence of an expanded polyQ tract in a mutant protein is known to induce protein aggregation, cellular stress, toxicity, and finally cell death. However, the consequences of the presence of mutant ataxin7 in the retina and the mechanisms underlying photoreceptor degeneration remain poorly understood. ⋯ We have also shown that the photoreceptor death does not involve a caspase-dependent apoptosis but instead involves apoptosis inducing factor (AIF) and Leukocyte Elastase Inhibitor (LEI/L-DNase II). When these two cell death effectors are downregulated by their siRNA, a significant reduction in photoreceptor death is observed. These results highlight the consequences of polyQ protein expression in the retina and the role of caspase-independent pathways involved in photoreceptor cell death.
-
It is well established that astrocytes play pivotal roles in neuronal synapse formation and maturation as well as in the modulation of synaptic transmission. Despite their general importance for brain function, relatively little is known about the maturation of astrocytes during normal postnatal development, especially during adolescence, and how that maturation may influence astroglial-synaptic contact. The medial prefrontal cortex (mPFC) and dorsal hippocampus (dHipp) are critical for executive function, memory, and their effective integration. ⋯ Here we utilize an astrocyte-specific viral labeling approach paired with high-resolution single-cell astrocyte imaging and three-dimensional reconstruction to determine whether mPFC and dHipp astrocytes have temporally distinct maturation trajectories. mPFC astrocytes, in particular, continue to mature well into emerging adulthood (postnatal day 70). Moreover, this ongoing maturation is accompanied by a substantial increase in colocalization of astrocytes with the postsynaptic neuronal marker, PSD-95. Taken together, these data provide novel insight into region-specific astrocyte-synapse interactions in late CNS development and into adulthood, thus raising implications for the mechanism of post-adolescent development of the mPFC.
-
Day-to-day life involves the perception of events that resemble one another. For the sufficient encoding and correct retrieval of similar information, the hippocampus provides two essential cognitive processes. Pattern separation refers to the differentiation of similar input information, whereas pattern completion reactivates memory representations based on noisy or degraded stimuli. ⋯ In volumetry, we found a global hippocampal volume reduction. The deficits in pattern separation performance were best predicted by the DG (p = 0.029), whereas CA1 was highly predictive of recognition memory deficits (p < 0.001). These results corroborate the framework of a regional specialization of hippocampal functions involved in cognitive processing.