Neuroscience
-
The present study was designed to use blood-oxygen-level dependent (BOLD) imaging to "fingerprint" the change in activity in response to oxycodone (OXY) in drug naïve rats before and after repeated exposure to OXY. It was hypothesized that repeated exposure to OXY would initiate adaptive changes in brain organization that would be reflected in an altered response to opioid exposure. Male rats exposed to OXY repeatedly showed conditioned place preference, evidence of drug-seeking behavior and putative neuroadaptation. ⋯ In the MEMRI study, rats received OXY treatments (2.5 mg/kg, twice daily) for four consecutive days following intraventricular MnCl2. Under isoflurane anesthesia, T1-weighted images were acquired and subsequently analyzed showing activity in the forebrain limbic system, ventral striatum, accumbens, amygdala and hippocampus. These results show brain activity is markedly different when OXY is presented to drug naïve rats versus rats with prior, repeated exposure to drug.
-
Sleep disturbances are a common early symptom of neurodegenerative diseases, including Alzheimer's disease (AD) and other age-related dementias, and emerging evidence suggests that poor sleep may be an important contributor to development of amyloid pathology. Of the causes of sleep disturbances, it is estimated that 10-20% of adults in the United States have sleep-disordered breathing (SDB) disorder, with obstructive sleep apnea accounting for the majority of the SBD cases. The clinical and epidemiological data clearly support a link between sleep apnea and AD; yet, almost no experimental research is available exploring the mechanisms associated with this correlative link. ⋯ No effect was found for chronic IH exposure on amyloid-beta levels or plaque load in the APP/PS1 KI mice. A significant increase in GFAP staining was found in the APP/PS1 KI mice following chronic IH exposure, but not in the WT mice. Profiling of genes associated with different phenotypes of astrocyte activation identified GFAP, CXCL10, and Ggta1 as significant responses activated in the APP/PS1 KI mice exposed to chronic IH.
-
The α3 Na+,K+-ATPase (α3NKA) is one of four known α isoforms of the mammalian transporter. A deficiency in α3NKA is linked to severe movement control disorders. Understanding the pathogenesis of these disorders is limited by an incomplete knowledge of α3NKA expression in the brain as well as the challenges associated with identifying living cells that express the isoform for subsequent electrophysiological studies. ⋯ Fluorescence was not detected in astrocytes or white matter areas. ZsGreen1-positive neurons were readily observed in fresh (unfixed) brain sections, which were amenable to patch-clamp recordings. Thus, the α3NKA-ZsGreen1 mouse model provides a powerful tool for studying the distribution and functional properties of α3NKA-expressing neurons in the brain.
-
We investigated the dose dependence of the role of nociceptors in opioid-induced side-effects, hyperalgesia and pain chronification, in the rat. Systemic morphine produced a dose-dependent biphasic change in mechanical nociceptive threshold. At lower doses (0.003-0.03 mg/kg, s.c.) morphine induced mechanical hyperalgesia, while higher doses (1-10 mg/kg, s.c.) induced analgesia. ⋯ Thus, the induction of hyperalgesia, but not priming, by low-dose morphine, is MOR-dependent. In contrast, induction of both hyperalgesia and priming by high-dose morphine is MOR-dependent. The receptor at which low-dose morphine acts to produce priming remains to be established.
-
Microglia, the resident immune cells of the central nervous system (CNS), are activated at the beginning of the inflammatory response and induce detrimental neuroinflammation by producing excessive pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) signaling facilitates the onset of microglia activation. However, the molecular mechanisms underlying the negative regulation of NF-κB remain to be fully elucidated. ⋯ Co-immunoprecipitation experiments further revealed an interaction between H4R and tumor necrosis factor receptor-associated factor 6 (TRAF6) in microglia, which was verified both in vivo and in vitro. Our experimental results support our hypothesis that H4R interacts with TRAF6 to inhibit the release of inflammatory cytokines in LPS-induced microglia cells by decreasing TRAF6-mediated ubiquitination of K63. These findings provide theoretical and experimental evidence regarding the role of H4R in the microglia inflammatory response, which may aid in the development of novel treatments for inflammation.