Neuroscience
-
Inflammation aggravates the lethal consequences of intracerebral hemorrhage. Recently, many studies have found that nuclear factor-κB (NF-κB) is a crucial transcription factor that initiates inflammation in the perihematomal region of ICH. NF-κB essential modulator (NEMO)-binding domain (NBD) peptide, a cell-permeable peptide spanning the NBD of IKKα or IKKβ, functions as a highly specific inhibitor of NF-κB. ⋯ We found that NBD peptides suppressed microglia inflammation and lowered the expression of TNF-α and IL-1β in both in vivo and in vitro experiments. Further experiments were performed in mice and cultured microglia, which treated with NBD peptides in the presence of p65 siRNA confirmed that the specificity of NBD peptides inhibit ICH-induced NF-κB activation. This study demonstrated that NBD peptides exert a neuroprotective role after ICH and might be a potential candidate for a novel therapeutic strategy for ICH.
-
Review
New Perspectives for the Modulation of Mind-Wandering Using Transcranial Electric Brain Stimulation.
When our attention is decoupled from an ongoing task and becomes coupled to thoughts and feelings not being subject to task engagement, we are mind-wandering. This transient and pervasive mental process can occupy a considerable amount of our waking hours. Mind-wandering is understood to exert both positive and negative effects on well-being, and has been shown to play a role in mood disorders and depression. ⋯ For instance, tDCS effects on deliberate versus undeliberate mind-wandering should be disentangled. The hippocampus as an important hub for mind-wandering-related processes may be targeted. Most importantly, research efforts related to mind-wandering and rumination should be integrated.
-
Of current obesity treatments, bariatric surgery induces the most weight loss. Given the marked increase in the number of bariatric surgeries performed, elucidating the mechanisms of action is a key research goal. We compared whole brain activation in response to high-energy dense (HED) vs. low-energy dense (LED) visual and auditory food cues before and approximately 4 months after Roux-en-Y Gastric Bypass (RYGB) (n = 16) and Sleeve Gastrectomy (SG) (n = 9). ⋯ LED, suggesting greater cognitive dietary inhibition and decreased rewarding effects and attention related to HED foods. dlPFC activation was significantly more increased in RYGB vs. SG. We also found that postprandial increases in GLP-1 concentrations (pre to postsurgery) correlated with postsurgical decreases in RYGB brain activity in the inferior temporal gyrus and the right middle occipital gyrus in addition to increases in the right medial prefrontal gyrus/paracingulate for HED > LED stimuli, suggesting involvement of these attention and inhibitory regions in satiety signaling postsurgery.
-
Spatial relations (SRs: coordinate/metric vs categorical/non metric) and frames of reference (FoRs: egocentric/body vs allocentric/external element) represent the building blocks underlying any spatial representation. In the present 7-T fMRI study we have identified for the first time the neural correlates of the spatial representations emerging from the combination of the two dimensions. The direct comparison between the different spatial representations revealed a bilateral fronto-parietal network, mainly right sided, that was more involved in the egocentric categorical representations. ⋯ Finally, a smaller part of this bilateral network (i.e. Calcarine Sulcus and Lingual Gyrus), along with the right Supramarginal and Inferior Frontal gyri, supported the allocentric coordinate representations. The fact that some areas were more involved in a spatial representation than in others reveals how our brain builds adaptive spatial representations in order to effectively react to specific environmental needs and task demands.
-
Sex differences in neural structures are generally believed to underlie sex differences reported in anxiety, depression, and the hypothalamic-pituitary-adrenal axis, although the specific circuitry involved is largely unclear. Using a corticotropin-releasing factor receptor 1 (CRFR1) reporter mouse line, we report a sexually dimorphic distribution of CRFR1 expressing cells within the paraventricular hypothalamus (PVN; males > females). Relative to adult levels, PVN CRFR1-expressing cells are sparse and not sexually dimorphic at postnatal days 0, 4, or 21. ⋯ CRFR1 cells show moderate co-expression with estrogen receptor alpha (ERα) and high co-expression with androgen receptor, indicating potential mechanisms through which circulating gonadal hormones might regulate CRFR1 expression and function. Finally, we demonstrate that a psychological stressor, restraint stress, induces a sexually dimorphic pattern of neural activation in PVN CRFR1 cells (males >females) as assessed by co-localization with the transcription/neural activation marker phosphorylated CREB. Given the known role of CRFR1 in regulating stress-associated behaviors and hormonal responses, this CRFR1 PVN sex difference might contribute to sex differences in these functions.