Neuroscience
-
Songbirds possess mirror neurons (MNs) activating during the perception and execution of specific features of songs. These neurons are located in high vocal center (HVC), a premotor nucleus implicated in song perception, production and learning, making worth to inquire their properties and functions in vocal recognition and imitative learning. By integrating a body of brain and behavioral data, we discuss neurophysiology, anatomical, computational properties and possible functions of songbird MNs. ⋯ At the functional level, we discuss whether songbird MNs are involved in others' song recognition, by dissecting the function of recognition in various different but possible overlapping processes: action-oriented perception, discriminative-oriented perception and identification of the signaler. We conclude that songbird MNs may be involved in recognizing other singer's vocalizations, while their role in imitative learning still require to solve how auditory feedback are used to correct own vocal performance to match the tutor song. Finally, we compare songbird and human mirror responses, hypothesizing a case of convergent evolution, and proposing new experimental directions.
-
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective loss of motor neurons. Statins are widely used as cholesterol-lowering drugs and significantly reduce the risk of cardiovascular and cerebrovascular diseases. Increasing evidence indicates the protective effects of statins against certain neurodegenerative diseases. ⋯ Conversely, these outcomes were completely reversed by co-incubation with mevalonate, farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP) but not cholesterol. In addition, inhibition of geranylgeranyl transferase I by GGTI-286 led to similar alterations in cell viability and autophagic marker levels. These results indicated that the cytotoxic effect of simvastatin on NSC34-hSOD1G93A cells might be due to the aggravation of autophagic flux impairment through the inhibition of GGPP synthesis.
-
Voltage-gated Ca2+ channels (VGCCs) play key roles in auditory perception and information processing within the inner ear and brainstem. Pharmacological inhibition of low voltage-activated (LVA) T-type Ca2+ channels is related to both age- and noise induced hearing loss in experimental animals and may represent a promising approach to the treatment of auditory impairment of various etiologies. Within the LVA Ca2+ channel subgroup, Cav3.2 is the most prominently expressed T-type channel entity in the cochlea and auditory brainstem. ⋯ Our results, based on a self-programmed automated wavelet approach, demonstrate that both heterozygous and Cav3.2 null mutant mice exhibit age-dependent increases in hearing thresholds at 5 months of age. In addition, complex alterations in WI-IV amplitudes and latencies were detected that were not attributable to alterations in the expression of other VGCCs in the auditory tract. Our results clearly demonstrate the important physiological role of Cav3.2 VGCCs in the spatiotemporal organization of auditory processing in young adult mice and suggest potential pharmacological targets for interventions in the future.
-
Glucose metabolism and serotonergic neurotransmission have been reported to play an important role in epileptogenesis. We therefore aimed to use neuroimaging to evaluate potential alterations in serotonin 5-HT1A receptor and glucose metabolism during epileptogenesis in the rat electrical kindling model. To achieve this goal, we performed positron emission tomography (PET) imaging in a rat epileptogenesis model triggered by electrical stimulation of the hippocampus using 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG), a radiolabeled analog of glucose, and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine (18F-MPPF), a radiolabeled 5-HT1A receptor ligand, to evaluate brain metabolism and 5-HT1A receptor functionality. ⋯ Importantly, astroglial activation was detected in the hippocampus of kindled rats. Overall, electrical kindling induced hypometabolism, astrogliosis and serotonergic alterations in epilepsy-related regions. Furthermore, the present findings point to 5-HT1A receptor as a valuable epileptogenesis biomarker candidate and a potential therapeutic target.
-
Oscillatory activity is a prominent characteristic of the olfactory system. We previously demonstrated that beta and gamma oscillations occurrence in the olfactory bulb (OB) is modulated by the physical properties of the odorant. However, it remains unknown whether such odor-related modulation of oscillatory patterns is maintained in the piriform cortex (PC) and whether those patterns are similar between the anterior PC (aPC) and posterior PC (pPC). ⋯ Thus, some odor coding mechanisms observed in the OB are retained in the aPC. By contrast, probability of occurrence of different oscillatory patterns is homogeneous in the pPC with beta-only pattern being the most prevalent one for all the different odor families. Overall, our results confirmed the functional heterogeneity of the PC with its anterior part tightly coupled with the OB and mainly encoding odorant features whereas its posterior part activity is not correlated with odorant features but probably more involved in associative and multi-sensory encoding functions.