Neuroscience
-
Locomotion involves complex combinations of translational and rotational head movements. For gaze stability, this necessitates the interplay of angular and linear vestibulo-ocular reflexes (VOR) as well as the integration of visual feedback about the desired viewing distance. Furthermore, gaze stabilizing systems must be able to cope with vast differences in head motion brought about by changing locomotor speeds and patterns (walking vs. running). ⋯ Thus, horizontal and vertical gaze stabilization strategies appear to be considerably different. Whereas horizontal gaze control is likely governed by passive sensorimotor reflexes throughout all locomotor speeds, vertical gaze stabilization switches to an automated feed-forward control at faster locomotion. This switch is presumably driven by efference copies from spinal locomotor commands that were previously shown to govern gaze stabilization in animal models during stereotypic locomotion.
-
Overexpression of vascular endothelial growth factor (VEGF) is considered the most critical factor in radiation-induced brain injury (RBI). To investigate the role of VEGF and the mechanism underlying microvascular damage in RBI, wild type mice, and transgenic mice overexpressing VEGF derived from astrocytes, were separately and randomly exposed to whole-brain or sham irradiation. Pathophysiologic changes in the brain tissue were detected 90 days after irradiation. ⋯ These data reveal that VEGF and Ang-2 expression is closely associated with the microvascular injury in RBI. Further, overexpression of VEGF can cause up-regulation of Ang-2 and exacerbation of RBI. Therefore, Ang-2 might be the cytokine that acts as a mediator between VEGF and microvascular injury, and is likely a new intervention target for RBI.
-
Neurogenesis in the substantia nigra (SN) has been a controversial issue. Here we report that neurogenesis can be induced in the adult rodent SN by transplantation of embryoid body cells (EBCs) derived from mouse embryonic stem cells. The detection of Sox2+ dividing (BrdU+) putative host neural precursor cells (NPCs) between 1 and 6 days post-transplantation (dpt) supported the neurogenic capacity of the adult SN. ⋯ Remarkably, new blood vessels formed in association with the neurogenic process that, when precluded, caused a reduction in neuroblast production. Accordingly, two proteins secreted by EBCs, Fgf2 and Vegf, were able to promote the emergence of Dcx+/Psa-Ncam+, Tubb3+ and NeuN+/BrdU+ cells in vivo in the absence of EBCs. We propose that the adult SN is a mostly silent neurogenic niche with the ability to generate new neurons by typical and atypical mechanisms.
-
Malformations of cortical development (MCDs) include many different Central Nervous System (CNS) disorders related to a complex process of cortex formation. In children with refractory epilepsy to drug treatment undergoing surgery, focal cortical dysplasia (FCD), one of the MCDs, is considered the most common structural brain lesion found. This study aimed to study the possible alterations in neural differentiation process of human induced pluripotent stem cells (hiPSCs) related to migration and synaptic aspects from fibroblasts of two individuals affected by FCD type IIb (45-year-old male and 12-year-old female) and normal individuals. ⋯ Our results showed that in all processes and groups, individuals with dysplasia presented alterations in most part of the genes in relation to control individuals. According to our results, it is suggested that the different expressions are mainly involved in alterations of the expression of receptors and capture sites, timing, coupling of synaptic vesicles with the presynaptic membrane, regulation of ion channel and synaptic exocytosis, imbalance of the apoptosis process and abnormal microtubules that may also contribute to delays in synaptogenesis. Thus, brain formation with dysplasia is probably influenced by these genes studied.
-
Human studies have repeatedly shown that conditioning pain modulation (CPM) exerts an overall descending inhibitory effect over spinal nociceptive activity. Previous studies have reported a reduction of the nociceptive withdrawal reflex (NWR) under CPM. Still, how descending control influences the muscle activation patterns involved in this protective behavior remains unknown. ⋯ Under CPM, Module I activation amplitude was significantly reduced in a narrow time-window interval (118-156 ms) mainly affecting distal muscles, whereas Module II activation amplitude was significantly reduced in a wider time-window interval (150-250 ms), predominantly affecting proximal muscles. These findings suggest that proximal muscles are largely under supraspinal control. The descending inhibitory drive exerted onto the spinal cord may adjust the withdrawal pattern by differential recruitment of the muscles involved in the protective behavior.