Neuroscience
-
Noradrenaline (NA) modulates the spinal motor networks for locomotion and facilitates neuroplasticity, possibly assisting neuronal network activation and neuroplasticity in the recovery phase of spinal cord injuries. However, neither the effects nor the mechanisms of NA on synaptic transmission and neuronal excitability in spinal ventral horn (VH) neurons are well characterized, especially in rats aged 7 postnatal days or older. To gain insight into NA regulation of VH neuronal activity, we used a whole-cell patch-clamp approach in late neonatal rats (postnatal day 7-15). ⋯ At a holding potential of 0 mV, NA also increased frequency and amplitude of both GABAergic and glycinergic inhibitory postsynaptic currents via the activation of somatic adrenoceptors in presynaptic neurons. In current-clamp recordings, NA depolarized resting membrane potentials and increased the firing frequency of action potentials in VH neurons, indicating that it enhances the excitability of these neurons. Our findings provide new insights that establish NA-based pharmacological therapy as an effective method to activate neuronal networks of the spinal VH in the recovery phase of spinal cord injuries.
-
Understanding the neural mechanisms of training-induced brain plasticity has significant implications for improving academic achievement. Previous studies suggest abacus-based mental calculation (AMC) training significantly improves individual's arithmetic capability, and the frontal-parietal network is suggested to be the key neural circuit underlying AMC. Yet, it remains unclear how AMC training shifts brain activation in this network and whether the training effect is transferable or not. ⋯ The control group, on the other hand, did not exhibit any pre- to post-training differences in brain activation on any of the three tasks. These findings extend the previous cross-sectional studies of AMC and suggest that AMC training induces functional changes in brain activation and such plasticity may be transferable beyond the AMC. The training effects on sustained and transient neural activity may also provide a new perspective to understand training-induced neural plasticity and related transfer effect.
-
μ-Opioid Receptor Activation Directly Modulates Intrinsically Photosensitive Retinal Ganglion Cells.
Intrinsically photosensitive retinal ganglion cells (ipRGCs) encode light intensity and trigger reflexive responses to changes in environmental illumination. In addition to functioning as photoreceptors, ipRGCs are post-synaptic neurons in the inner retina, and there is increasing evidence that their output can be influenced by retinal neuromodulators. Here we show that opioids can modulate light-evoked ipRGC signaling, and we demonstrate that the M1, M2 and M3 types of ipRGCs are immunoreactive for μ-opioid receptors (MORs) in both mouse and rat. ⋯ Recordings from solitary ipRGCs, enzymatically dissociated from retinas obtained from melanopsin-driven fluorescent reporter mice, confirmed that DAMGO exerts its effect directly through MORs expressed by ipRGCs. Reduced ipRGC excitability occurred via modulation of voltage-gated potassium and calcium currents. These findings suggest a potential new role for endogenous opioids in the mammalian retina and identify a novel site of action-MORs on ipRGCs-through which opioids might exert effects on reflexive responses to environmental light.
-
Aging causes various functional changes, including cognitive impairment and inflammatory responses in the brain. Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable channel expressed abundantly in immune cells, exacerbates inflammatory responses. Previously, we reported that TRPM2 on resident microglia plays a critical role in exacerbating inflammation, white matter injury, and cognitive impairment during chronic cerebral hypoperfusion; however, the physiological or pathophysiological role of TRPM2 during age-associated inflammatory responses remains unclear. ⋯ However, these characteristics were not seen in TRPM2 knockout (TRPM2-KO) mice. Consistent with the finding of cognitive impairment, aged WT mice exhibited white matter injury and hippocampal damage and an increase in the number of Iba1-positive cells and amounts of pro-inflammatory cytokines in the brain; these characteristics were not seen in TRPM2-KO mice. These findings suggest that TRPM2 plays a critical role in exacerbating inflammatory responses and cognitive dysfunction during aging.
-
Brain-derived neurotrophic factor (BDNF) is known to mediate activity-dependent changes in the developing auditory system. Its expression in the brainstem auditory nuclei, auditory cortex and hippocampus of neonatal chicks (Gallus gallus domesticus) in response to in ovo high intensity sound exposure at 110 dB (arrhythmic sound: recorded traffic noise, 30-3000 Hz with peak at 2700 Hz, rhythmic sound: sitar music, 100-4000 Hz) was examined to understand the previously reported altered volume and neuronal number in these regions. In the brainstem auditory nuclei, no mature BDNF, but proBDNF at the protein level was detected, and no change in its levels was observed after in ovo sound stimulation (music and noise). ⋯ Expression microarray analysis was performed to understand changes in gene expression in the hippocampus in response to music and noise, followed by gene ontology analysis showing enrichment of probable signaling pathways. Differentially expressed genes like CAMK1 and STAT1 were found to be involved in downstream signaling on comparing music versus noise-exposed chicks. In conclusion, we report that BDNF is differentially regulated in the auditory cortex at the transcriptional and post-translational level, and in the hippocampus at the post-translational level in response to in ovo sound stimulation.