Neuroscience
-
Holistic face processing is a critical component of face recognition. There are two classical measures of holistic face processing: the whole-part effect (WPE) and composite-face effect (CFE). However, the two effects have demonstrated inconsistent pattern of results in behavioral literature. ⋯ These results suggested that the WPE was related to integration of the rOFA within the CFN, while the CFE was associated with separation of the rFFA from other CFN regions. Further analyses showed that higher WPE was related to stronger connection between the rOFA and bilateral posterior superior temporal sulcus (pSTS), while larger CFE was associated with weaker connection between the rFFA and bilateral pSTS. In short, our study reveals distinct neural correlates of the two hallmarks of holistic face processing at network level and sheds new light on the different mechanisms of holistic face processing reflected by the two effects.
-
Oxysterol derived from cholesterol metabolism is involved in the inflammatory activation, and consequently in development of major chronic diseases. Multiple cytokines have been found to induce the expression of cholesterol metabolism-related enzymes. Several studies have shown that the protein level of cholesterol-25-hydroxylase (CH25H) is remarkably increased in response to injury of central nervous system (CNS), but little is known about the mechanisms of cytokine-induced expression of CH25H in specific cell types, and the resultant effects. ⋯ MIF facilitated ch25h expression of astrocytes through interaction with CD74 membrane receptor, which in turn promoted production of chemokines, as identified by transcriptome profiles. MIF-induced release of oxysterol 25-hydroxycholesterol (25-HC) from astrocytes affects cell migration, but inhibited cell viability in dose-dependent manner, suggesting that MIF aggravates progressive neuropathology through regulation of cholesterol metabolism following CNS injury. These results have provided a novel mechanism and a potential therapeutic strategy for injured CNS.
-
Aging causes various functional changes, including cognitive impairment and inflammatory responses in the brain. Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable channel expressed abundantly in immune cells, exacerbates inflammatory responses. Previously, we reported that TRPM2 on resident microglia plays a critical role in exacerbating inflammation, white matter injury, and cognitive impairment during chronic cerebral hypoperfusion; however, the physiological or pathophysiological role of TRPM2 during age-associated inflammatory responses remains unclear. ⋯ However, these characteristics were not seen in TRPM2 knockout (TRPM2-KO) mice. Consistent with the finding of cognitive impairment, aged WT mice exhibited white matter injury and hippocampal damage and an increase in the number of Iba1-positive cells and amounts of pro-inflammatory cytokines in the brain; these characteristics were not seen in TRPM2-KO mice. These findings suggest that TRPM2 plays a critical role in exacerbating inflammatory responses and cognitive dysfunction during aging.
-
Lamina X is localized in the spinal cord within the region surrounding the central canal and receives descending projections from the supraspinal nuclei. Norepinephrine (NE) is a neurotransmitter in descending pathways emanating from the brain stem; NE-containing fibers terminate in the spinal dorsal cord, particularly in the substantia gelatinosa (SG). NE enhances inhibitory synaptic transmission in SG neurons by activating presynaptic α1-receptors and hyperpolarizes the membranes of SG neurons by acting on α2-receptors; NE may thus act directly on SG neurons of the dorsal spinal cord and inhibit nociceptive transmission at the spinal level. ⋯ NE-induced enhancement of mIPSCs was blocked by α1A-receptor antagonists, and NE-induced outward current was blocked by α2-receptor antagonists. NE did not affect GABA- or glycine- induced outward currents. These findings are similar to those obtained from SG neurons: NE may act at presynaptic terminals of GABAergic and glycinergic interneurons on lamina X to facilitate inhibitory-transmitter release through α1A-receptor activation and directly induce inhibitory interneuron membrane hyperpolarization through α2-receptors activation.
-
Thrombospondins (TSPs) are cell adhesion molecules that play an important role in the maintenance of hearing and afferent synaptic connections. Based on their reported function in restoring synaptic connections after stroke, we tested a potential role for TSP1 and TSP2 genes in repairing cochlear synapses following noise injury. We observed a tonotopic gradient in the expression of TSP1 and TSP2 mRNA in control mouse cochleae and an upregulation of these genes following noise exposure. ⋯ Noise trauma affecting mid to high frequencies triggered severe seizures in the TSP2-/- mice. We found that decreased susceptibility to audiogenic seizures in TSP1-/- mice was correlated with increased TSP2 protein levels in their inner ears, suggesting that TSP2 might functionally compensate for the loss of TSP1 in these mice. Our data indicate that TSP1 and TSP2 are both involved in susceptibility to NIHL, with TSP2 playing a more prominent role.