Neuroscience
-
Inflammation may result in periventricular leukomalacia, which is the leading cause of preterm brain encephalopathy. Moreover,
-3 polyunsaturated fatty acids ( -3 PUFAs) play a pivotal role against central nervous system injury, which is likely related to its anti-inflammatory effect. However, the mechanism regarding the remedial effects of -3 PUFA for LPS-induced neuro-injury has remained unclear. ⋯ Interestingly, this phenomenon became more noticeable with the combined application of -3 PUFA and a PI3K/AKT agonist. In conclusion, we confirm that -3 PUFA plays an important role in neuroprotection by activating the PI3K/AKT/β-catenin pathway. It may be a promising strategy against brain injury. -
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutation in the X-linked MECP2 gene. Random X-inactivation produces a mosaic of mutant (MT) and wild-type (WT) neurons in female Mecp2+/- (het) mice. Many RTT symptoms are alleviated by increasing activity in medial prefrontal cortex (mPFC) in RTT model mice (Howell et al., 2017). ⋯ At 6-7 months inhibitory charge in WT in het slices was increased compared to both MT in het and WT in WTf; however, in hets the excitatory/inhibitory charge ratio was still greater in WT compared to MT. nAChR currents were reduced in L6 of nulls and MT L6 in het slices compared to WT neurons of het, WTm and WTf. At 2-4 months, ACh perfusion increased frequency of inhibitory currents to L6 neurons equally in all genotypes but increased excitatory inputs to MT and WT in hets less than WT in WTfs. Unexpectedly ACh perfusion evoked greater sustained IPSC and EPSC input to L5 neurons of nulls compared to WTm.
-
The cerebrospinal fluid (CSF) movement and its influence on substance distribution and elimination from the CSF system have been thoroughly analyzed and discussed in the light of the new hypothesis of CSF physiology. As a result, CSF movement is not presented as a circulation, but a permanent rhythmic systolic-diastolic pulsation in all directions. Such movement also represents the main force of substance distribution inside the CSF system. ⋯ If a certain transport mechanism is not available at one site, the substance will be distributed by CSF movement along the CSF system and into the CNS region where that transport mechanism is available. Pharmacological manipulation suggests that the residence time and the substance travel distance along the CSF system depend on the capacity of transport mechanisms situated on CNS blood capillaries. Physiological absorption of the CSF into the venous sinuses and/or lymphatics, due to their small surface area, should be of minor importance in comparison with the huge absorptive surface area of the microvessel network.
-
Subjective well-being (SWB) is closely related to our physical and mental health. Existing studies show that neural or genetic basis underpins individual difference in SWB. Moreover, researchers have found high enrichment of SWB-related mutations in the central nervous system, but the relationship between the genetic architecture of SWB and brain morphology has not been explored. ⋯ In whole-brain analyses, we found that a higher PGS was significantly associated with increased CT in the right superior temporal gyrus (STG) and GMV in the right insula, both of which are involved in social cognition and emotional processing. More importantly, these findings were repeatable at some different thresholds. The results may suggest that the brain morphology of right STG and insula is partly regulated by SWB-related genetic factors.
-
Stress is an additive factor in the development of depressive-like profiles that mainly onsets during adolescence. However, effects of early post-weaning stress on developing brain neurochemical pathways in inducing anxiety- and depressive-like profiles in vulnerable females have not been extensively studied. The Wistar Kyoto (WKY) rat, a putative model of adolescent depression and stress-sensitivity could elucidate the pathophysiology of stress-related depression in vulnerability. ⋯ Medial prefrontal cortex, a still maturing brain area, exhibited increased serotonin (5-HT) metabolite (p < 0.01) and turnover rates (p < 0.01) indicative of altered/maladaptive serotonergic functioning. Nucleus accumbens (p < 0.05) and dorsal striatum (p < 0.01) also depicted increased 5-HT metabolite, with the latter also demonstrating reduced Dopamine turnover (p < 0.01) as a result of homotypic stress. Hence, female WKY rats could constitute a diathesis-stress model to study underlying mechanisms of stress-related depression.