Neuroscience
-
The theory of communication through coherence (CTC) posits the synchronization of brain oscillations as a key mechanism for information sharing and perceptual binding. In a parallel literature, hippocampal theta activity (4-10 Hz) has been shown to modulate the appearance of neocortical fast gamma oscillations (100-150 Hz), a phenomenon known as cross-frequency coupling (CFC). Even though CFC has also been previously associated with information routing, it remains to be determined whether it directly relates to CTC. ⋯ To answer this question, we combined CFC (modulation index) and CTC (phase-locking value) metrics in order to detect the modulation of the cross-regional high-frequency synchronization by the phase of slower oscillations. Upon applying this method, we found that the inter-hemispheric synchronization of neocortical fast gamma during REM sleep depends on the instantaneous phase of the theta rhythm. These results show that CFC is likely to aid long-range information transfer by facilitating the synchronization of faster rhythms, thus consistent with classical CTC views.
-
Rats are a popular animal model for vision research and for investigating disorders of the visual system. The study aimed to quantify the spatiotemporal contrast sensitivity function (CSF) of healthy adult Brown-Norway rats under scotopic and photopic illumination. Animals were trained to jump onto the one of two adjacent platforms behind which was displayed a sinewave grating pattern. ⋯ CSFs were also measured via the visual head-tracking reflex. Photopic contrast sensitivity, spatial acuity, and temporal acuity were all markedly below that of the grating detection task and optomotor findings for other rat strains. The CSF data provide a comprehensive and quantitative description of rat spatial and temporal vision and a benchmark for evaluating effects of ocular diseases on their ability to see.
-
Cerebral small vessel disease (CSVD) is a common disease among elderly individuals and recognized as a major cause of vascular cognitive impairment. Recent studies demonstrated that CSVD is a disconnection syndrome. However, due to the covert neurological symptoms and subtle changes in clinical performance, the connection alterations during the stage of preclinical cognitive impairment (PCI) and mild cognitive impairment (MCI) are usually neglected and still largely unknown. ⋯ Moreover, in all CSVD patients, the strength of the rich-club, feeder and local connections was significantly correlated with multiple cognitive scores, especially in attention, executive, and memory domains; while in MCI patients, only the strength of the rich-club connections was significantly correlated with cognition. Furthermore, based on the network-based statistic analysis, we also identified distinct network component disruption pattern between the PCI group and the MCI group, validating the results described above. These results suggest a disruption pattern from peripheral to central connections with the change of cognitive status, shedding light on the early identification and the underlying disruption of CSVD.
-
Low-power and high-frequency bidirectional control of spatiotemporal patterns of neural spiking is one of the major challenges in optogenetics. A detailed theoretical analysis and optimization with ChR2-NpHR, ChR2(H134R)-eNpHR3.0, Chrimson-GtACR2 and also with prospective opsin pairs namely, Chronos-Jaws, Chronos-eNpHR3.0, CheRiff-Jaws and vf-Chrimson-GtACR2 has been presented. Biophysical circuit models of bidirectional optogenetic control in above opsin pairs expressing hippocampal neurons and fast-spiking neocortical interneurons have been formulated. ⋯ Although, Chrimson-GtACR2 enables bidirectional control at very low-power, vf-Chrimson-GtACR2 provides control with reduced cross-talk. The theoretical analysis highlights the usefulness of computational methods to virtually optimize stimulation protocols for optogenetic tool combinations. The study is useful to generate neural codes with desired spatiotemporal resolution and to design optogenetic neuroprosthetic devices and circuits.
-
It is well established that task complexity can affect both performance and brain processing. Event-related potentials (ERPs) studies have shown modulation of the well-known N2 and P3 components. However, limited information is available on the recently described frontal components associated with processing within the anterior insular cortex. ⋯ The task comparison revealed enhanced pP1 and pP2 components but a reduced N2 component in the complex paradigm. These results suggest that task complexity may entail greater processing strength in the anterior insula functions associated with endogenous perceptual processing. Also, findings on the N2 activity provide evidence against both the inhibitory and conflict interpretation of this component, as the N2 amplitude was reduced in the complex task.