Neuroscience
-
The theory of communication through coherence (CTC) posits the synchronization of brain oscillations as a key mechanism for information sharing and perceptual binding. In a parallel literature, hippocampal theta activity (4-10 Hz) has been shown to modulate the appearance of neocortical fast gamma oscillations (100-150 Hz), a phenomenon known as cross-frequency coupling (CFC). Even though CFC has also been previously associated with information routing, it remains to be determined whether it directly relates to CTC. ⋯ To answer this question, we combined CFC (modulation index) and CTC (phase-locking value) metrics in order to detect the modulation of the cross-regional high-frequency synchronization by the phase of slower oscillations. Upon applying this method, we found that the inter-hemispheric synchronization of neocortical fast gamma during REM sleep depends on the instantaneous phase of the theta rhythm. These results show that CFC is likely to aid long-range information transfer by facilitating the synchronization of faster rhythms, thus consistent with classical CTC views.
-
Cerebral small vessel disease (CSVD) is a common disease among elderly individuals and recognized as a major cause of vascular cognitive impairment. Recent studies demonstrated that CSVD is a disconnection syndrome. However, due to the covert neurological symptoms and subtle changes in clinical performance, the connection alterations during the stage of preclinical cognitive impairment (PCI) and mild cognitive impairment (MCI) are usually neglected and still largely unknown. ⋯ Moreover, in all CSVD patients, the strength of the rich-club, feeder and local connections was significantly correlated with multiple cognitive scores, especially in attention, executive, and memory domains; while in MCI patients, only the strength of the rich-club connections was significantly correlated with cognition. Furthermore, based on the network-based statistic analysis, we also identified distinct network component disruption pattern between the PCI group and the MCI group, validating the results described above. These results suggest a disruption pattern from peripheral to central connections with the change of cognitive status, shedding light on the early identification and the underlying disruption of CSVD.
-
Acute itch is elicited by histamine, as well as non-histaminergic itch mediators including chloroquine, BAM8-22 and Ser-Leu-Ile-Gly-Arg-Leu (SLIGRL). When injected intradermally, histamine binds to histamine H1 and H4 receptors that activate transient receptor potential vanilloid 1 (TRPV1) to depolarize pruriceptors. Chloroquine, BAM8-22, and SLIGRL, respectively, bind to Mas-related G-protein-coupled receptors MrgprA3, MrgprC11, and MrgprC11/PAR2 that in turn activate transient receptor potential ankyrin 1 (TRPA1). ⋯ Pretreatment with the TRPV1 antagonist AMG-517 (10 or 20 μg), but not the TRPA1 antagonist HC-030031 (50 or 100 μg), significantly attenuated the magnitude and time course of thermal hyperalgesia and mechanical allodynia elicited by histamine (p < 0.001 for both), indicating that these effects are mediated by TRPV1. In contrast, pretreatment with the TRPA1 antagonist significantly reduced thermal hyperalgesia and mechanical allodynia elicited by chloroquine (p < 0.001 for both ), BAM-822 (p < 0.01, p < 0.001, respectively) and SLGRL (p < 0.05, p < 0.001, respectively), indicating that effects elicited by these non-histaminergic itch mediators require TRPA1. TRPV1 and TRPA1 channel inhibitors thus may have potential use in reducing hyperalgesia and allodynia associated with histaminergic and non-histaminergic itch, respectively.
-
Recently, circular RNAs (circRNAs) have been revealed to be an important non-coding element of the transcriptome. The brain contains the most abundant and widespread expression of circRNA. There are also indications that the circular transcriptome undergoes dynamic changes as a result of brain ageing. ⋯ These changes in expression were validated by RT-qPCR. We provide the first comprehensive survey of the circular transcriptome in mammalian synapses, thereby paving the way for future studies. Additionally, we present 16 genes that express solely circRNAs, without linear RNAs co-expression, exclusively in young and aged synaptosomes, suggesting a synaptic gene network that functions along canonical splicing activity.
-
Changes in perineuronal nets (PNNs) after hearing loss were described in previous studies. The present study aimed to examine how single-sided deafness (SSD) affects the expression of excitatory and inhibitory synaptic transporters and PNNs in the primary auditory cortex (A1). Sprague-Dawley rats (8-week-old females, n = 30) were divided into three groups: (1) the SSD 2-week group (n = 10), (2) the SSD 4-week group (n = 10), and (3) the 4-week control group (n = 10). ⋯ The SSD groups had elevated expression levels of metalloproteinase (MMP) 9 on the contralateral side. The presynaptic glutamatergic and GABAergic transporters were increased in the A1 on the ipsilateral side after induction of SSD. Changes in the cortical auditory nervous system accompanied changes in the PNNs and their degradation enzymes MMP9 and MMP14.