Neuroscience
-
Glutamate is the major excitatory neurotransmitter in the nucleus tractus solitarii (nTS) and mediates chemoreflex function during periods of low oxygen (i.e. hypoxia). We have previously shown that nTS excitatory amino acid transporters (EAATs), specifically EAAT-2, located on glia modulate neuronal activity, cardiorespiratory and chemoreflex function under normal conditions via its tonic uptake of extracellular glutamate. Chronic sustained hypoxia (SH) elevates nTS synaptic transmission and chemoreflex function. ⋯ After 3D SH, DHK decreased TS-EPSC amplitude yet its resulting Ihold was eliminated. EAAT-2 mRNA and protein increased after 3D and 7D SH, respectively. These data suggest that SH alters the expression and function of EAAT-2 which may have a neuroprotective effect.
-
The objective of this study was to examine the interactive effects of exercise and low-level inhibition of GABAA receptors on the recovery of motor function and BDNF expression in the primary motor cortex (M1) of a stroke rat model. Male Sprague-Dawley rats were divided into five groups: sham (SHAM), control (CON), exercise (EX), bicuculline (BIC), and bicuculline plus exercise (BICEX) groups. All rats, except those in the SHAM group, underwent middle cerebral artery occlusion (MCAO) surgery to induce an ischemic stroke. ⋯ Furthermore, BDNF protein level in the ipsilateral M1 was significantly higher in the BICEX group than in other groups. This study indicated that exercise combined with low-level inhibition of GABAA receptors after stroke could facilitate the recovery of motor function accompanied by BDNF upregulation in the ipsilateral M1. Therefore, this study provides a novel insight of pharmacological neuromodulation into stroke rehabilitation.
-
Recent findings from neuroimaging studies provided initial insights into cortical contributions to postural control. These studies observed enhanced cortical activation and connectivity when task-difficulty and postural instability increased. However, little attention has been paid to the allocation of cortical networks appearing with a decreasing base of support from bipedal to single leg stance. Therefore, the aim of the present study was to investigate modulations of functional connectivity from bipedal to single leg stance. ⋯ Altogether, the present findings may indicate modulations of cortical contributions in single leg compared to bipedal stance. The present data suggest that decreased inter-hemispherical functional connectivity, in conjunction with a global increase in cortical excitability, may indicate enhanced alertness and task-specific selective inhibition of motor networks in favor of postural control.
-
While it is generally accepted that structural and functional brain deficits underlie the behavioral deficits associated with Fetal Alcohol Spectrum Disorders (FASD), the degree to which these problems are expressed in sensory pathology is unknown. Electrophysiological measures indicate that neural processing is delayed in visual and auditory domains. Furthermore, multiple reports of white matter deficits due to prenatal alcohol exposure indicate altered cortical connectivity in individuals with FASD. ⋯ Somatosensory M100 response latency was faster in right hemisphere for multisensory relative to unisensory stimulation in both groups. FASD participants' somatosensory M200 responses were delayed by 13 ms, but only for the unisensory presentation of the somatosensory stimulus. M200 results indicate that unisensory and multisensory processing is altered in FASD; it remains to be seen if the multisensory response represents a normalization of the unisensory deficits.
-
The current project investigated the dynamics of postural movements and muscle activity during balancing with feet-together and feet-apart positions on different support surfaces (firm surface (FS), modified- and conventional balance boards). We hypothesized that movement complexity and muscle activation would increase with increased balance-task difficulty, and that differences in the composition and control of postural movements between bipedal wide- and narrow-based balancing would be observed in all surface conditions. We applied a principal component analysis (PCA) to decompose postural movement trajectories of 26 active-young adults into sets of movement components (principal movements; PMs). ⋯ Standing on the stable surface illustrated opposite control behaviors compared to balancing on both multiaxial-unstable surfaces. In summary, on stable surface, changing the feet position affected inter-segment coordination. On unstable surfaces, the postural control system appeared to maintain inter-segment coordination characteristics, while the adaptation was confined to the sensorimotor integration processes.