Neuroscience
-
In the CNS, chemokines and chemokine receptors are involved in pleiotropic physiological and pathological activities. Several evidences demonstrated that chemokine signaling in the CNS plays key homeostatic roles and, being expressed on neurons, glia and endothelial cells, chemokines mediate the bidirectional cross-talk among parenchymal cells. ⋯ In this review we summarize the evidence that chemokines (CXCL12, CX3CL1, CXCL16 and CCL2) modulate neuroprotective processes upon different noxious stimuli and participate to orchestrate neurons-microglia-astrocytes action to preserve and limit brain damage. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
-
Myasthenia gravis (MG) is a relatively rare neurological disease that is usually associated with antibodies to the acetylcholine receptor (AChR). These antibodies (Abs) cause loss of the AChRs from the neuromuscular junction (NMJ), resulting in muscle weakness that can be life-threatening. Another form of the disease is caused by antibodies to muscle specific kinase (MuSK) that result in impaired AChR clustering and numbers at the NMJ, and may also interfere with presynaptic adaptive mechanisms. ⋯ All four conditions can be diagnosed by specific clinical features, electromyography and serum antibody tests, and can be treated effectively by a combination of pharmacological approaches and procedures that reduce the levels of the IgG antibodies. They form the first of a spectrum of diseases in which serum autoantibodies bind to extracellular domains of neuronal proteins throughout the nervous system and lead to constellations of clinical features including paralysis, sensory disturbance and pain, memory loss, seizures, psychiatric disturbance and movement disorders. This review will briefly summarize the ways in which this field has developed, since the 1970s when considerable contributions were made in Ricardo Miledi's laboratory at UCL.
-
The striatal cholinergic system is key in detecting changes in instrumental contingencies. While recent evidence supports this vision, cell type-specific online control on the activity of the cholinergic striatal neurons is necessary to empirically test it. ⋯ Remarkably, a manipulation that perturbs the activity of CINs, rather than inhibiting them also impaired the encoding of the change in contingency. These results emphasize that beyond an increase in the activity of CINs, the intact activity of these cells is required for the identification of an instrumental contingency change.
-
Most local anesthetics (LAs) are amine compounds bearing one or several phenolic rings. Many of them are protonated at physiological pH, but benzocaine (Bzc) is permanently uncharged, which is relevant because the effects of LAs on nicotinic acetylcholine (ACh) receptors (nAChRs) depend on their presence as uncharged or protonated species. The aims of this study were to assess the effects of Bzc on nAChRs and to correlate them with its binding to putative interacting sites on this receptor. nAChRs from Torpedo electroplaques were microtransplanted to Xenopus oocytes and currents elicited by ACh (IAChs), either alone or together with Bzc, were recorded at different potentials. ⋯ Furthermore, docking assays on models of the nAChR revealed that Bzc and DMA binding sites on nAChRs overlap fairly well. These results demonstrate that Bzc inhibits nAChRs by multiple mechanisms and contribute to better understanding both the modulation of nAChRs and how LAs elicit some of their clinical side effects. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
-
Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. It has been reported that homomeric ASIC-1a channels are expressed in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. During synaptic transmission, acidification of the synaptic cleft presumably due to the co-release of neurotransmitter and H+ from synaptic vesicles activates postsynaptic ASIC-1a channels in mice up to 3 weeks old. ⋯ Furthermore, at high frequency stimulation (HFS), ASIC1a-SCs contribute to diminish short term depression (STD) and their contribution is even more relevant at early stages of development. Since ASIC channels are present in almost all types of neurons and synaptic vesicles content is acid, the participation of protons in synaptic transmission and its potentiation by endogenous substances could be a general phenomenon across the central nervous system. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.