Neuroscience
-
Stress plays a crucial role in the pathogenesis of psychiatric disorders and affects neuronal plasticity in different brain regions. We have previously found that acute foot-shock (FS) stress elicits fast and long-lasting functional and morphological remodeling of excitatory neurons in the prefrontal cortex (PFC), which were partly prevented by the pretreatment with antidepressants. Here we investigated, whether acute stress and pretreatment with desipramine (DMI) interfere in hippocampal dendritic remodeling. ⋯ However, DMI treatment without stress differentially affected the expression patterns of spine-related genes and proteins. In conclusion, acute FS-stress and pretreatment with DMI significantly changed dendritic morphology, including number and morphology of spines, and the length of dendrites in hippocampal CA1 pyramidal cells as early as 1 day, and sustained up to 14 days after acute FS. The findings were paralleled by changes in gene and protein expression of actin binding and cytoskeletal proteins, Rho GTPases, and postsynaptic scaffolding proteins.
-
Randomized Controlled Trial
Early exercise after intracerebral hemorrhage inhibits inflammation and promotes neuroprotection in the sensorimotor cortex in rats.
The present study examined the effect of early exercise on brain damage and recovery of motor function following intracerebral hemorrhage (ICH) in rats. Subjects were randomly assigned to no training after ICH (ICH), no training after sham surgery (SHAM), early treadmill exercise after ICH (ICH + ET), and late treadmill exercise after ICH (ICH + LT) groups. The ICH + ET and ICH + LT groups were trained for seven consecutive days starting on day 2 and day 9 after surgery, respectively. ⋯ Expression of IL-1b mRNA was significantly lower in the ICH + ET group than that in the ICH group. Collectively, these results suggest that early treadmill exercise after ICH promotes recovery of sensorimotor function by preventing neuronal death and ensuing cortical atrophy and by preserving dendritic structure compared with late treadmill exercise and no exercise. Early exercise may prevent neurodegeneration and functional loss by inhibiting neuroinflammation.
-
Cyclin-dependent kinase 5 (Cdk5) is a regulator of axon growth and radial neuronal migration in the developing mouse brain, and it plays critical roles in cortical structure formation and brain function. However, the function of Cdk5 in cortico-cortical and cortico-sensorimotor networks in the adult remains largely unknown. In this study, we investigated the function of Cdk5 in the rostral secondary motor cortex (M2) in the male mouse using CRISPR/Cas9 gene editing and somatic brain transgenesis, to produce M2-specific knockdown of Cdk5 in neurons in the male mouse. ⋯ Furthermore, whole-cell patch-clamp recordings in layer V green fluorescent protein (GFP)-tag pyramidal neurons revealed a decrease in the frequency and amplitude of miniature EPSCs and miniature IPSCs, as well as a reduction in the population synaptic responses (fEPSPs) in these mice. Specifically, retrograde labeling showed that Cdk5 knockdown in the M2 caused a reduction in long-range projections to the M2 from the thalamus/prefrontal cortex and claustrum. Collectively, our findings show a new regulatory role of Cdk5 in neural circuit maintenance, and that the changes in neural transmission and circuits in the mice with Cdk5 knockdown in the M2 likely contribute to the motor dysfunction in these animals.
-
The complexity of brain activity has recently been investigated using the Hurst exponent (H), which describes the extent to which functional magnetic resonance imaging (fMRI) blood oxygen-level dependent (BOLD) activity is simple vs. complex. For example, research has demonstrated that fMRI activity is more complex before than after consumption of alcohol and during task than resting state. The measurement of H in fMRI is a novel method that requires the investigation of additional factors contributing to complexity. ⋯ Multiple regression analyses demonstrated that eigenvector centrality was the most robust predictor of complexity, whereby greater centrality was associated with increased complexity (lower H). Regions known to be highly connected, including the thalamus and hippocampus, notably were among the highest in centrality and complexity. This research has led to a greater understanding of how brain region characteristics such as DTI centrality relate to the novel Hurst exponent approach for assessing brain activity complexity, and implications for future research that employ these measures are discussed.
-
Binge drinking is a common pattern of adolescent alcohol consumption characterized by a high alcohol intake within a short period of time; which may seriously affect brain function, triggering in some cases an addictive behavior. Current evidence indicates that alcohol addictive conduct is related to the impairment of the Melanocortin System (MCS). This system participates in the regulation of food intake and promotes anti-inflammatory response in the brain. ⋯ Additionally, MC4R activation prevented mitochondrial potential loss and increased mitochondrial mass that were significantly reduced by binge ethanol protocol. Finally, RO27-3225 treatment increased ATP production and mitochondrial respiratory complex expression in adolescent rats exposed to ethanol. Altogether, these findings show that activation of the MCS pathway through MC4R prevents these negative effects of binge ethanol protocol, suggesting a possible role of the MCS in the reduction of the neurotoxic effects induced by alcohol intoxication in adolescents.