Neuroscience
-
Neurophysiological and neuroimaging evidence suggests a significant contribution of several brain areas, including subdivisions of the parietal and the premotor cortex, during the processing of different components of hand and arm movements. Many investigations improved our knowledge about the neural processes underlying the execution of reaching and grasping actions, while few studies have directly investigated object manipulation. Most studies on the latter topic concern the use of tools to achieve specific goals. ⋯ Then, we have described the main structures recruited during object manipulation. We have also reported the contribution of recent structural connectivity techniques whereby the cortico-cortical and cortico-subcortical connections of grasping-related and manipulation-related areas in the human brain can be determined. Based on our review, we have concluded that studies on cortical and subcortical circuits involved in grasping and manipulation might be promising to provide new insights about motor learning and brain plasticity in patients with motor disorders.
-
Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. ⋯ Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.
-
The human nervous system is one of the most complicated systems in nature. Complex nonlinear behaviours have been shown from the single neuron level to the system level. For decades, linear connectivity analysis methods, such as correlation, coherence and Granger causality, have been extensively used to assess the neural connectivities and input-output interconnections in neural systems. ⋯ We argue that nonlinear modelling and analysis are necessary to study neuronal processing and signal transfer in neural systems quantitatively. These approaches can hopefully provide new insights to advance our understanding of neurophysiological mechanisms underlying neural functions. These nonlinear approaches also have the potential to produce sensitive biomarkers to facilitate the development of precision diagnostic tools for evaluating neurological disorders and the effects of targeted intervention.
-
Deficits in the anticipation and experience of affective events represent a key risky factor for a variety of mental disorders, such as anxiety and depression. Here, we examined temporal dynamics underlying the modulations of the aversive mood state on neural responses of anticipating and perceiving affective pictures. Participants were asked to perform an affective cueing paradigm in both threat and safe contexts. ⋯ Our findings revealed that threat context compared with the safe context attenuated the contingent negative variation (CNV) responses to the cues of positive expressions, and decreased differential late positive potential (LPP) responses to the perception of negative and positive events. These findings suggest that aversive mood dampens the anticipation of positive events and inhibits the elaboration of negative events. The current findings do not only advance our understanding on the temporal characteristics of affective anticipation and experience but also have implications on the emotional deficits across various mental disorders characterized by chronic mood disturbances.
-
The N170 is a large deflection of the human electroencephalogram (EEG), peaking at about 170 milliseconds over the occipito-temporal cortex after the sudden onset of a face stimulus. The N170 reflects perceptual awareness of a face and its onset corresponds to the emergence of reliable face-selectivity in the human brain. However, whether sensitivity to the long-term familiarity of a face identity emerges already at this early time-point remains debated. ⋯ This effect is especially present for personally familiar faces, learned in natural conditions. In the human brain, effects linked to familiarity with specific facial identities therefore appear to emerge between 150 and 200 ms in occipito-temporal brain regions, i.e., shortly after the onset of face-selectivity but at the same time as the earliest high-level effects of immediate unfamiliar face identity repetition. This observation challenges standard neurocognitive models with a clear-cut distinction between perceptual and memory stages in human face recognition.