Neuroscience
-
In a bimanual task, proprioception provides information about position and movement of upper arms. Developmental studies showed improvement of proprioceptive accuracy and timing adjustments of muscular events from childhood to adulthood in bimanual tasks. However, the cortical maturational changes related to bimanual coordination is not fully understood. ⋯ Amplitude of the negative wave at C4 was higher in children and early adolescents compared to the other groups. In conclusion, we found a maturational process in cortical correlates related to motor planning and upper limb stabilization performance with interhemispheric lateralization appearing during adolescence. Findings may serve documenting bimanual performance in children with neurodevelopmental disorders.
-
During cultural transmission, caregivers typically adjust their form of speech according to the presumed characteristics of an infant/child, a phenomenon known as infant/child directed speech (IDS/CDS) or "parentese." Although ventromedial prefrontal cortex (vmPFC) damage was previously found to be associated with failure in adjusting non-verbal communicative behaviors, little is known about the neural mechanisms of verbal communicative adjustments, such as IDS/CDS. In the current study, 30 healthy mothers with preschool-age children underwent functional magnetic resonance imaging (fMRI) while performing a picture naming task which required them to name an object for either a child or an adult. In the picture naming task, mothers exhibited a longer naming duration in the toward-child condition than the toward-adult control condition. ⋯ These findings suggest that the vmPFC, which is included in the default mode network, is involved in optimizing communicative behaviors for the inter-generational transmission of knowledge. This function of the vmPFC may be considered as a prosocial drive to lead to prosocial communicative behaviors depending on the context. This study provides a better understanding of the neural mechanisms involved in communicative adjustments for children and insight into related applied research fields such as parenting, pedagogy, and education.
-
We used a finger force matching task to explore the role of efferent signals in force perception. Healthy, young participants performed accurate force production tasks at different force levels with the index and middle fingers of one hand (task-hand). They received visual feedback during an early part of each trial only. ⋯ In particular, using distorted copies of the RC for the antagonist muscle group could account for the differences between the task-hand and match-hand. We conclude that efferent signals may be distorted before their participation in the perceptual process. Such distortions emerge spontaneously and may be amplified by the response of sensory endings to muscle vibration combined over both agonist and antagonist muscle groups.
-
Working memory (WM) capacity, the amount of information one can hold online in mind, has a central role in cognition. Previous electrophysiological and imaging studies revealed the pivotal role of persistent activity within parietal and frontal regions as the neural foundations underpinning WM capacity. The best candidate molecules determining persistent activity are the brain's major excitatory and inhibitory neurotransmitters, glutamate and gamma-aminobutyric acid (GABA), respectively. ⋯ Individual variation in parieto-cingulate connectivity was explained by glutamatergic concentration in the IPS. Moreover, we found that parieto-cingulate connectivity mediated the relationship between interparietal sulcus glutamate and WM capacity. This set of findings reveals a novel mechanistic insight by which glutamatergic concentration within the IPS shapes WM capacity via parieto-cingulate connectivity.
-
Alpha-synuclein (αS) is an intrinsically disordered protein (IDP) that is abundantly present in the brain and is associated with Parkinson's disease (PD). In spite of its abundance and its contribution to PD pathogenesis, the exact cellular function of αS remains largely unknown. The ability of αS to remodel phospholipid model membranes combined with biochemical and cellular studies suggests that αS is involved in endocytosis. ⋯ We find no structural colocalization between αS and clathrin and Rab11 positive vesicles. We conclude that in a physiological context, αS is structurally associated with caveolin dependent membrane vesiculation and is found further along the endocytic pathway, in decreasing amounts, on early and late endosomes. Our results not only shed new light on the function of αS, they also provide a possible link between αS function and vesicle trafficking malfunction in PD.