Neuroscience
-
Perceiving the temporal regularity in a sequence of repetitive sensory events facilitates the preparation and execution of relevant behaviors with tight temporal constraints. How we estimate temporal regularity from repeating patterns of sensory stimuli is not completely understood. We developed a decision-making task in which participants had to decide whether a train of visual, auditory, or tactile pulses, had a regular or an irregular temporal pattern. ⋯ Model fits of bounded integration showed that this accumulation occurs with negligible leak of evidence. Consistent with previous findings, we show that participants perform better when evaluating the regularity of auditory pulses, as compared with visual or tactile stimuli. Our results suggest that temporal regularity is estimated by comparing expected and measured pulse onset times, and that each prediction error is accumulated towards a threshold to generate a behavioral choice.
-
The neural cognitive mechanism in processing static facial expressions (FEs) has been well documented, whereas the one underlying perceiving dynamic faces remains unclear. In this study, Fourier transformation and time-frequency analysis of Electroencephalography (EEG) data were carried out to detect the brain activation underlying dynamic or static FEs while twenty-one participants were viewing dynamic or static faces flicking at 10 Hz. In particular, steady-state visual evoked potentials (SSVEPs) were quantified through spectral power analysis of EEG recordings. ⋯ Additionally, GCA demonstrated that the H2N case, in which happy FEs were being gradually changed into neutral ones, exhibited larger GC measure during the late processing stage than that from the early stage. Consequently, enhanced SSVEPs and effective brain connectivity for dynamic FEs illustrated that participants might need consume more attentional resources to process the dynamic faces, particularly for the change from happy to neutral faces. The new neural index might facilitate us to better understand the cognitive processing of dynamic and static FEs.
-
Memory involves a complex network system of interconnected brain areas in which labile trace memories are transformed into enduring ones and reorganized in a time-dependant manner. Although it has been observed that remote memories are less prone to destabilizing, they can become fragile and lead to behavioural decline. We explored the behavioural outcomes of male and female rats in response to the reactivation of a previously acquired allocentric spatial reference memory, under conditions in which animals have shown a retrieval decay. ⋯ Moreover, we observed that, following reactivation, male rats reveal a decrease in metabolic activity in septal nuclei and thalamic structures, whereas female rats add a metabolic reduction in the hippocampus, amygdala, mPFC, and retrosplenial, parietal and rhinal cortices, suggesting that they efficiently employ these brain areas when reactivation a memory that has suffered a decay with time. Finally, although male and female rats perform the behavioural task equally, we found sex differences at the brain metabolism level, revealing the differential contribution of brain limbic system energy demands by sex, even when their performance is similar. In conclusion, our work provides behavioural and brain data about remote spatial retrieval and memory reactivation processes.
-
Human milk oligosaccharides (HMO)s are a key component in human milk and represent an important dietary modulator of infant gut microbiota composition and associated gut-brain axis development and homeostasis. The brain reward system, specifically the mesolimbic dopamine (DA) projections from the ventral tegmental area (VTA) to nucleus accumbens (NAc) is involved in the motivation and preference for food. The objective of the present study was to determine if HMO fortified diets given during the critical period of reward system development (p21) could affect the structure of the reward system. ⋯ In males, VTA DAT and FosB were negatively correlated with body weight and systemic leptin. Sex differences in the expression of DA markers underscore the need to investigate this phenomenon and understand the functional significance in preventing or treating obesity. This study highlights sex differences in response to HMO supplementation and the need for further investigations into the functional significance of nutritional interventions during DA system development.
-
Intestinal microbiota are essential for healthy gastrointestinal function and also broadly influence brain function and behavior, in part, through changes in immune function. Gastrointestinal disorders are highly comorbid with psychiatric disorders, although biological mechanisms linking these disorders are poorly understood. The present study utilized rats bred for distinct emotional behavior phenotypes to examine relationships between emotionality, the microbiome, and immune markers. ⋯ There were no baseline HR/LR microbiome differences, and antibiotic treatment disrupted the microbiome in both HR and LR rats. Antibiotic treatment exacerbated aspects of HR/LR behavior, increasing LRs' already high levels of anxiety-like behavior while reducing passive stress coping in both strains. Our results highlight the importance of an individual's phenotype to their response to antibiotics, contributing to the understanding of the complex interplay between gut microbes, immune function, and an individual's emotional phenotype.