Neuroscience
-
Caveolin-1 (Cav-1) is a constitutive structural protein of caveolae in the plasma membrane. It plays an important role in maintaining blood brain barrier (BBB) integrity. In this study, we identified that miR-103-3p, a hypoxia-responsive miRNA, could interact with Cav-1. ⋯ Pre-SAH intracerebroventricularly injection of miR-103-3p antagomir relieved Cav-1 loss, sequentially reduced BBB permeability and improved neurological function. Finally, we demonstrated that the salutary effects of miR-103-3p antagomir were abolished in Cav-1 knock-out mice, suggesting that Cav-1 was required for the miR-103-3p inhibition-induced neurovascular protection. Taken together, our findings suggest that the inhibition of miR-103-3p could exert neuroprotective effects through preservation of Cav-1 and BBB integrity, making miR-103-3p a novel therapeutic target for SAH.
-
By the effort to identify candidate signaling molecules important for the formation of robust circadian rhythms in the suprachiasmatic nucleus (SCN), the mammalian circadian center, here we characterize the role of α2δ proteins, synaptic molecules initially identified as an auxiliary subunit of the voltage dependent calcium channel, in circadian rhythm formation. In situ hybridization study demonstrated that type 3 α2δ gene (α2δ3) was strongly expressed in the SCN. ⋯ Cultured SCN slices from Per1-luc transgenic Cacna2d3-/- mice revealed reduced synchrony of Per1-luc gene expression rhythms among SCN neurons. These findings suggest that α2δ3 is essential for synchronized cellular oscillations in the SCN and thereby contributes to enhancing the sustainability of circadian rhythms in behavior.
-
Ischemic stroke remains the third leading cause of death and leading cause of adult disability worldwide. A key event in the pathophysiology of stroke is the anoxic depolarization (AD) of neurons in the ischemic core. Previous studies have established that both the latency to AD and the time spent in AD prior to re-oxygenation are predictors of neuronal death. ⋯ Experiments using slices with fields Cornu ammonis 3 (CA3) and Cornu ammonis 1 (CA1) disconnected showed that AD latency is longer in CA1 than in CA3; however, the early AD in CA3 is propagated to CA1 in intact slices. Finally, AD latency in CA1 was found to be longer in slices from female mice than in those from age-matched male mice. The results have implications for stroke prevention and for understanding brain adaptations in hypoxia-tolerant animals.
-
As a textbook manifestation of an aggressive attitude, hostility can pose a serious threat to both an individual's life and the security of society at large. Past evidence suggests that some anxiety-related traits may be more prone to giving rise to hostility. However, many aspects of hostility, such as, determining the susceptible temperament for hostility, the neural basis of hostility, and the underlying mechanisms through which having a susceptible temperament generates hostility in a healthy brain, remain unclear. ⋯ Finally, we used a mediation analysis to explore the tripartite relationship between vulnerability temperament, the fractional anisotropy (FA) value of the white matter, and hostility. Our results suggest that a harm avoidance temperament may be susceptible to hostility and that the cingulum may be a key white matter region responsible for hostility. Based on these results, we developed a temperament-brain-attitude pathway showing how harm avoidance temperament could affect the brain and ultimately lead to hostility.
-
Despite the high prevalence of major depressive disorder (MDD), understanding of the biological underpinnings remains limited. Rodent models suggest that changes in activity and output of dopamine (DA) neurons in the ventral tegmental area (VTA) are important for depressive-like phenotypes. Additionally, brain inflammatory processes are thought to contribute to MDD pathology and inflammation in the VTA has been linked to changes in VTA DA neuronal activity. ⋯ In contrast, IL-1β expression was unchanged in male or female mice following SCVS. No significant increases in VTA ionized calcium binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) immunochemistry were detected following CSDS that would be indicative of a robust inflammatory response. In conclusion, we show that chronic stressors distinctively alter expression of proinflammatory genes in the VTA and changes may depend on the severity and time-course of the stress exposure.