Neuroscience
-
Parkinson's disease (PD) is characterized by tremor, rigidity, and bradykinesia. PD is caused mainly by depletion of the nigrostriatal pathway. Conventional medications such as levodopa are highly effective in the early stage of PD; however, these medications fail to prevent the underlying neurodegeneration. ⋯ For example, although fetal ventral midbrain is efficacious in some patients, its ethical issues and the existence of graft-induced dyskinesias (GID) have prevented its use in large-scale clinical applications. ESCs have reliable isolation protocols and the potential to differentiate into dopaminergic progenitors. iPSCs and induced neural cells are suitable for autologous grafting. Here we review milestone improvements and emerging sources for cell-based PD therapy to serve as a framework for clinicians and a key reference to develop replacement therapy for other neurological disorders.
-
The cerebellum has long been conceptualized to control motor learning and motor coordination. However, increasing evidence suggests its roles in cognition and emotion behaviors. ⋯ To better understand the contribution of the cerebellum in ASD pathogenesis, we here discuss recent behavioral, genetic, and molecular studies from the human and mouse models. In addition, we raise several questions that need to be investigated in future studies from the point view of cerebellar dysfunction, cerebro-cerebellar connectivity and ASD.
-
Masao Ito proposed a cerebellar learning hypothesis with Marr and Albus in the early 1970s. He suggested that cerebellar flocculus (FL) Purkinje cells (PCs), which directly inhibit the vestibular nuclear neurons driving extraocular muscle motor neurons, adaptively control the horizontal vestibulo-ocular reflex (HVOR) through the modification of mossy and parallel fiber-mediated vestibular responsiveness by visual climbing fiber (CF) inputs. Later, it was suggested that the same FL PCs adaptively control the horizontal optokinetic response (HOKR) in the same manner through the modification of optokinetic responsiveness in rodents and rabbits. ⋯ Today, their hypothesis is considered as a fundamental mechanism of cerebellar learning. Furthermore, it was found that the memory of adaptation is transferred from the FL to vestibular nuclei for consolidation by repetition of adaptation through the plasticity of vestibular nuclear neurons. In this article, after overviewing their cerebellar learning hypothesis, I discuss possible roles of LTD and LTP in gain-up and gain-down HVOR/HOKR adaptations and refer to the expansion of their hypothesis to cognitive functions.
-
Molecular layer interneurons (MLIs) play an important role in cerebellar information processing by controlling Purkinje cell (PC) activity via inhibitory synaptic transmission. A local MLI network, constructed from both chemical and electrical synapses, is organized into spatially structured clusters that amplify feedforward and lateral inhibition to shape the temporal and spatial patterns of PC activity. Several recent in vivo studies indicate that such MLI circuits contribute not only to sensorimotor information processing, but also to precise motor coordination and cognitive processes. Here, we review current understanding of the organization of MLI circuits and their roles in the function of the mammalian cerebellum.
-
Fifty years have passed since David Marr, Masao Ito, and James Albus proposed seminal models of cerebellar functions. These models share the essential concept that parallel-fiber-Purkinje-cell synapses undergo plastic changes, guided by climbing-fiber activities during sensorimotor learning. ⋯ In this review, we evaluate different features of the three models based on recent computational and experimental studies. While acknowledging that the three models have greatly advanced our understanding of cerebellar control mechanisms in eye movements and classical conditioning, we propose a new direction for computational frameworks of the cerebellum, that is, hierarchical reinforcement learning with multiple internal models.