Neuroscience
-
Estrogen produces a beneficial role in animal models of multiple sclerosis (MS). The effect of 17β-estradiol therapy on microglia polarization and neuroinflammation in the corpus callosum of the cuprizone-induced demyelination model has not been elucidated. In this study, mice were given 0.2% cuprizone (CPZ) for 5 weeks to induce demyelination during which they received 50 ng of 17β-estradiol (EST), injected subcutaneously in the neck region, twice weekly. ⋯ Moreover, administration of 17β-estradiol resulted in a significant reduction (∼3-fold) in transcript levels of NLRP3 inflammasome and its downstream product IL-18, compared to controls. In summary, this study demonstrated for the first time that exogenous 17β-estradiol therapy robustly leads to the reduction of M1 phenotype, stimulation of polarized M2 microglia, and repression of NLRP3 inflammasome in the corpus callosum of CPZ demyelination model of MS. The positive effects of 17β-estradiol on microglia and inflammasome seems to facilitate and accelerate the remyelination process.
-
In amyotrophic lateral sclerosis (ALS), large motoneurons degenerate first, causing muscle weakness. Transgenic mouse models with a mutation in the gene encoding the enzyme superoxide dismutase 1 (SOD1) revealed that motoneurons innervating the fast-fatigable muscular fibres disconnect very early. The cause of this peripheric disconnection has not yet been established. ⋯ We conclude that dendritic overbranching and early hypoexcitability are common features of both low expressor SOD1 mutants (G85R and G93A-low). In the high-expressor SOD1G93A line, we found hyperexcitability in the sustained firing motoneurons at the same period, suggesting a delay in compensatory mechanisms. Overall, our results suggest that the hypoexcitability indicate an early dysfunction of the delayed-onset motoneurons and could account as early pathological signs of the disease.
-
Dual orexinergic antagonists (DORAs) have been recently developed as a pharmacotherapy alternative to established hypnotics. Hypnotics are largely evaluated in preclinical rodent models in the dark/active period yet should be ideally evaluated in the light/inactive period, analogous to when sleep disruption occurs in humans. We describe here the hypnotic efficacy of DORA-22 in rodent models of sleep disturbance produced by cage changes in the light/inactive period. ⋯ EEG measures indicated that all DORA-22 doses largely promoted sleep in the first hour. The lowest dose (1 mg/kg) did not decrease sleep onset latency at the six-hour timepoint, suggesting no residual hypersomnolence. We described here DORA-22 hypnotic efficacy during the normal sleep period of nocturnal rats, and demonstrate that well-chosen (low) hypnotic doses of DORA-22 may be hypnotically effective yet have minimal lingering effects.
-
Tobacco exposure has been linked to neuroinflammation and adaptive/maladaptive changes in neurotransmitter systems, including in glutamatergic systems. We examined the effects of waterpipe tobacco smoke (WTS) on inflammatory mediators and astroglial glutamate transporters in mesocorticolimbic brain regions including the prefrontal cortex (PFC), nucleus accumbens (NAc) and ventral tegmental area (VTA). The behavioral consequences of WTS exposure on withdrawal-induced anxiety-like behavior were assessed using elevated plus maze (EPM) and open field (OF) tests. ⋯ WTS exposure increased the relative mRNA levels for nuclear factor ĸB (NFĸB), tumor necrosis factor-α (TNF-α), and brain-derived neurotrophic factor (BDNF) in the PFC, NAc and VTA, and ceftriaxone treatment reversed these effects. In addition, WTS decreased the relative mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2), glutamate transporter 1 (GLT-1) and cystine-glutamate transporter (xCT) in PFC, NAc and VTA, and ceftriaxone treatment normalized their expression. WTS caused neuroinflammation, alteration in relative mRNA glutamate transport expression, and increased anxiety-like behavior, and these effects were attenuated by ceftriaxone treatment.
-
Opioid use by women during pregnancy has risen dramatically since 2004, accompanied by a striking increase in the prevalence of neonatal opioid withdrawal syndrome (NOWS) and other long-term neurological deficits. However, the mechanisms underlying the impact of prenatal opioid exposure on fetal neurodevelopment are largely unknown. To translate from the clinical presentation, we developed a novel mouse model to study the neurodevelopmental consequences of maternal opioid use and management. ⋯ However, adolescent offspring exposed to maternal opioid use during pregnancy exhibited hyperactivity in late adolescence. Remarkably, we also show increased generation of dopaminergic neurons within the ventral tegmental area (VTA) of mice exposed to prenatal opioids. These data provide critical evidence of teratogenic effects of opioid use during pregnancy and suggest a causal relationship between maternal opioid use and neurodevelopmental/behavioral anomalies in adolescence.