Neuroscience
-
The cerebellum forms regular neural network structures consisting of a few major types of neurons, such as Purkinje cells, granule cells, and molecular layer interneurons, and receives two major inputs from climbing fibers and mossy fibers. Its regular structures consist of three well-defined layers, with each type of neuron designated to a specific location and forming specific synaptic connections. During the first few weeks of postnatal development in rodents, the cerebellum goes through dynamic changes via proliferation, migration, differentiation, synaptogenesis, and maturation, to create such a network structure. ⋯ Therefore, it is reasonable that extracellular signaling via synaptic transmission, secreted molecules, and cell adhesion molecules, plays important roles in cerebellar network development. Although it is not yet clear as to how overall cerebellar development is orchestrated, there is indeed accumulating lines of evidence that extracellular signaling acts toward the development of individual elements in the cerebellar networks. In this article, we introduce what we have learned from many studies regarding the extracellular signaling required for cerebellar network development, including our recent study suggesting the importance of unbiased synaptic inputs from parallel fibers.
-
Cerebellar development has a remarkably protracted morphogenetic timeline that is coordinated by multiple cell types. Here, we discuss the intriguing cellular consequences of interactions between inhibitory Purkinje cells and excitatory granule cells during embryonic and postnatal development. Purkinje cells are central to all cerebellar circuits, they are the first cerebellar cortical neurons to be born, and based on their cellular and molecular signaling, they are considered the master regulators of cerebellar development. ⋯ They provide a combination of mechanical, molecular and activity-based cues that shape the maturation of Purkinje cell structure, connectivity and function. We propose that the wiring of Purkinje cells for function falls into two developmental phases: an initial phase that is guided by intrinsic mechanisms and a later phase that is guided by dynamically-acting cues, some of which are provided by granule cells. In this review, we highlight the mechanisms that granule cells use to help establish the unique properties of Purkinje cell firing.
-
This article is dedicated to the memory of Masao Ito. Masao Ito made numerous important contributions revealing the function of the cerebellum in motor control. His pioneering contributions to cerebellar physiology began with his discovery of inhibition and disinhibition of target neurons by cerebellar Purkinje cells, and his discovery of the presence of long-term depression in parallel fiber-Purkinje cell synapses. ⋯ These discoveries became the basis for his ideas regarding the flocculus hypothesis, the adaptive motor control system, and motor learning by the cerebellum, inspiring many new experiments to test his hypotheses. This article will trace the achievements of Ito and colleagues in analyzing the neural circuits of the input-output organization of the cerebellar cortex and nuclei, particularly with respect to motor control. The article will discuss some of the important issues that have been solved and also those that remain to be solved for our understanding of motor control by the cerebellum.
-
Autism spectrum disorders (ASD) are highly prevalent neurodevelopmental disorders; however, the neurobiological mechanisms underlying disordered behavior in ASD remain poorly understood. Notably, individuals with ASD have demonstrated difficulties generating implicitly derived behavioral predictions and adaptations. ⋯ In this review, we will utilize the foundational, theoretical contributions of the late neuroscientist Masao Ito to establish an internal model framework for the cerebellar contribution to ASD-relevant behavioral predictions and adaptations. Additionally, we will also explore and then apply his key experimental contributions towards an improved, mechanistic understanding of the contribution of cerebellar dysfunction to ASD.
-
Purkinje cells (PCs) are principal cerebellar neurons, and several classes of interneurons modulate their activity. Lugaro cells (LCs) are one such inhibitory interneuron with distinctive cytology and location, but still most enigmatic among cerebellar neurons. Here we serendipitously produced a novel transgenic mouse line, where a half of Yellow Cameleon (YC)(+) cells in the cerebellar cortex were judged to be LCs, and YC(+) LCs were estimated to constitute one-third of the total LC populations. ⋯ In turn, YC(+) LCs projected a dense lattice of ascending and transverse axons to the molecular layer, and innervated molecular layer interneurons (basket and stellate cells) and Golgi cells, but not PCs. Of note, ascending axons profusely innervated individual targets within a cerebellar compartment, while transverse axons ran across several compartments and innervated targets sparsely. This unique circuit configuration highlights that LCs integrate various excitatory, inhibitory, and modulatory inputs coming to the belonging cerebellar compartment and that, as an interneuron-selective interneuron, LCs can effectively disinhibit cerebellar cortical activities in a compartment-dependent manner through inhibition of inhibitory interneurons selectively targeting PCs and granule cells.