Neuroscience
-
Editorial on Extracellular protons mediate presynaptic homeostatic potentiation at the mouse neuromuscular junction.
-
The episodes of brief unconsciousness in patients with childhood absence epilepsy are a result of corticothalamocortical circuitry dysfunction. This dysfunction may arise from multifactorial mechanisms in patients from different genetic backgrounds. In previous studies using the epileptic stargazer mutant mouse, which experience frequent absence seizures, we reported a deficit in AMPAR-mediated feed-forward inhibition of parvalbumin-containing (PV+) interneurons. ⋯ We report region-specific alterations in GABA expression, but not of glutamate, and most prominently at PV+ synaptic terminals. These results suggest that impaired feed forward inhibition may occur via reduced activation of these interneurons and concomitant decreased GABAergic signaling. Further investigations into GABAergic control of corticothalamocortical network activity could be key in our understanding of absence seizure pathogenesis.
-
Before the advent of L-DOPA, the gold standard symptomatic therapy for Parkinson's disease (PD), anticholinergic drugs (muscarinic receptor antagonists) were the preferred antiparkinsonian therapy, but their unwanted side effects associated with impaired extrastriatal cholinergic function limited their clinical utility. Since most patients treated with L-DOPA also develop unwanted side effects such as L-DOPA-induced dyskinesia (LID), better therapies are needed. ⋯ Recent animal model studies showing that SCINs undergo profound changes in their tonic discharge pattern after chronic L-DOPA administration call for a reexamination of classical views of how SCINs contribute to PD symptoms and LID. Here, we review the recent advances on the circuit implications of aberrant striatal cholinergic signaling in PD and LID in an effort to provide a comprehensive framework to understand the effects of anticholinergic drugs and with the aim of shedding light into future perspectives of cholinergic circuit-based therapies.
-
The purpose of this study is to probe into the influence mechanism of parental emotional warmth (PEW) on extraversion for children and adolescents, as well as the moderating and mediating role of brain functional activity. Thirty-two children and adolescents underwent functional magnetic resonance imaging (fMRI) scans and completed Egna Minnen av Barndoms Uppfostran (EMBU) and Eysenck Personality Questionnaire (EPQ). Small-worldness (SW) of brain networks, fractional amplitude of low-frequency fluctuations (fALFF), and region-of-interest to region-of-interest (ROI-ROI) functional connectivity were calculated to study intrinsic neuronal activity. ⋯ The mediating effect of SW was moderated by the functional connectivity between the right precuneus and the right dorsolateral superior frontal gyrus. The indirect effect was significant with lower level of the functional connectivity between the right precuneus and the right dorsolateral superior frontal gyrus. These findings indicate that SW of brain networks may be a key factor that accounts for the positive association between PEW and extraversion in children and adolescents and the level of the functional connectivity between the right precuneus and the right dorsolateral superior frontal gyrus could moderate the relationship.
-
Sensory neurons within DRGs are broadly divided into three types that transmit nociceptive, mechanical, and proprioceptive signals. These subtypes are established during in utero development when sensory neurons differentiate into distinct categories according to a complex developmental plan. Most of what we know about this developmental plan comes from studies in rodents and little is known about this process in humans. ⋯ These peaks were followed by increased expression of their respective neurotrophic factors. Our results show significant differences in the expression of key signalling molecules for human DRG development versus that of rodents, most notably the expression of neurotrophins that promote the survival of sensory neuron types. This highlights the importance of examining molecular changes in humans to better inform the application of data collected in pre-clinical models.