Neuroscience
-
Half a century since their discovery by Llinás and colleagues, dendritic spikes have been observed in various neurons in different brain regions, from the neocortex and cerebellum to the basal ganglia. Dendrites exhibit a terrifically diverse but stereotypical repertoire of spikes, sometimes specific to subregions of the dendrite. ⋯ This article aims to survey the full range of dendritic spikes found in excitatory and inhibitory neurons, compare themin vivoversusin vitro, and discuss new studies describing dendritic spikes in the human cortex. We focus on neocortical and hippocampal neurons and present a roadmap to identify and understand the broader role of dendritic spikes in single-cell computation.
-
There has been increasing interest in the measurement and comparison of activity across compartments of the pyramidal neuron. Dendritic activity can occur both locally, on a single dendritic segment, or globally, involving multiple compartments of the single neuron. ⋯ However, the distinction between local and global activity made by calcium imaging requires careful consideration. In this review we describe local and global activity, discuss the difficulties and caveats of this distinction, and present the evidence of local and global activity in information processing and behavior.
-
Computations on the dendritic trees of neurons have important constraints. Voltage dependent conductances in dendrites are not similar to arbitrary direct-current generation, they are the basis for dendritic nonlinearities and they do not allow converting positive currents into negative currents. ⋯ We find that dendritic model performance on interesting machine learning tasks is not hurt by these constraints but may benefit from them. Our results suggest that single real dendritic trees may be able to learn a surprisingly broad range of tasks.
-
Much of our understanding of dendritic and synaptic physiology comes from in vitro experimentation, where the afforded mechanical stability and convenience of applying drugs allowed patch-clamping based recording techniques to investigate ion channel distributions, their gating kinetics, and to uncover dendritic integrative and synaptic plasticity rules. However, with current efforts to study these questions in vivo, there is a great need to translate existing knowledge between in vitro and in vivo experimental conditions. ⋯ Here, we argue that under physiological in vivo ionic conditions, dendrites are expected to be more excitable and the threshold for synaptic plasticity induction to be lowered. Consequently, the plasticity rules described in vitro vary significantly from those implemented in vivo.
-
Review
Cholinergic Modulation of Dendritic Signaling in Hippocampal GABAergic Inhibitory Interneurons.
Dendrites represent the "reception hub" of the neuron as they collect thousands of different inputs and send a coherent response to the cell body. A considerable portion of these signals, especially in vivo, arises from neuromodulatory sources, which affect dendritic computations and cellular activity. In this context, acetylcholine (ACh) exerts a coordinating role of different brain structures, contributing to goal-driven behaviors and sleep-wake cycles. ⋯ We consider the distribution of cholinergic receptors on these interneurons, including information about their specific somatodendritic location, and discuss how the action of these receptors can modulate dendritic Ca2+ signaling and activity of interneurons. The implications of ACh-dependent Ca2+ signaling for dendritic plasticity are also discussed. We propose that cholinergic modulation can shape the dendritic integration and plasticity in interneurons in a cell type-specific manner, and the elucidation of these mechanisms will be required to understand the contribution of each cell type to large-scale network activity.