Neuroscience
-
In presymptomatic amyotrophic lateral sclerosis (ALS), spinal motoneurons (MNs) have reduced firing patterns and synaptic excitation levels. Preliminary data indicated that in the SOD1 G93A mouse model of ALS, monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in spinal MN by Ia proprioceptive afferent stimulation could be facilitated by trans-spinal direct current stimulation (tsDCS). However, which element of the Ia afferent-MN circuit is affected by tsDCS, and whether tsDCS-induced EPSP facilitation is a general phenomenon or specific to the superoxide dismutase type-1 (SOD1) Glycine to Alanine substitution at position 93 (G93A) mutation, remain to be determined. ⋯ Moreover, anodal tsDCS failed to induce any long-lasting changes in MN passive membrane properties in both SOD1 and WT mice. Conversely, cathodal tsDCS decreased Ia afferent induced EPSP amplitudes only during current application in SOD1 MNs, and no significant effects on Ia afferents excitability were observed. Our findings indicate the high susceptibility of SOD1 MNs to tsDCS and highlight the potential of this neuromodulation technique for the treatment of ALS.
-
Cerebral ischemia/reperfusion injury (CIRI) is closely related to mitochondrial dysfunction in astrocytes. Therefore, based on glucose transporter 1 (GLUT1), which is highly expressed in the brain tissue of rats with CIRI, we design a kind of brain-targeted dexmedetomidine (Man@Dex) nanomicelles. The results showed that Man@Dex not only had the advantages of small particle size, stability and non-toxicity, but also realized brain-targeted drug delivery. ⋯ The CIRI rat model was constructed and confirmed by hematoxylin and eosin (HE), Triphenyl-2H-tetrazolium chloride (TTC) staining and nerve defect score. It indicated that Man@Dex could alleviate CIRI and improve MMP, which was beneficial to the recovery of brain injury in rats. This research provides a new theoretical basis and target for the development of brain-targeted nano-drugs of CIRI.
-
Spinal cord injury (SCI) is a central nervous system trauma that can cause severe neurological impairment. A series of pathological and physiological changes after SCI (e.g., inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction) promotes further deterioration of the microenvironment at the site of injury, leading to aggravation of neurological function. ⋯ A comprehensive understanding of the function and regulatory mechanism of Nrf2 in the pathophysiology of SCI will aid in the development of targeted therapeutic strategies for SCI. This review discusses the roles of Nrf2 in SCI, with the aim of aiding in further elucidation of SCI pathophysiology and in efforts to provide Nrf2-targeted strategies for the treatment of SCI.
-
The beneficial effects of exercise on human brain function have been demonstrated in previous studies. Myokines secreted by muscle have attracted increasing attention because of their bridging role between exercise and brain health. Regulated by PPARγ coactivator 1α, fibronectin type III domain-containing protein 5 releases irisin after proteolytic cleavage. ⋯ Meanwhile, irisin has anxiolytic and antidepressant effects. The potential therapeutic effects of irisin in epilepsy and pain have been initially revealed. Due to the pleiotropic and beneficial properties of irisin, the possibility of irisin treating other neurological diseases could be gradually explored in the future.
-
Cellular senescence is an important contributor to aging and age-related diseases such as Alzheimer's disease (AD). Senescent cells are characterized by a durable cell proliferation arrest and the acquisition of a proinflammatory senescence-associated secretory phenotype (SASP), which participates in the progression of neurodegenerative disorders. Clearance of senescent glial cells in an AD mouse model prevented cognitive decline suggesting pharmacological agents targeting cellular senescence might provide novel therapeutic approaches for AD. Δ133p53α, a natural protein isoform of p53, was previously shown to be a negative regulator of cellular senescence in primary human astrocytes, with clinical implications from its diminished expression in brain tissues from AD patients. ⋯ Our data suggest that Aβ-induced astrocyte cellular senescence is associated with accelerated DNA damage, and upregulation of full-length p53 and its senescence-inducing target gene p21WAF1. We also show that exogenously enhanced expression of Δ133p53α rescues human astrocytes from Aβ-induced cellular senescence and SASP through both protection from DNA damage and dominant-negative inhibition of full-length p53, leading to inhibition of Aβ-induced, astrocyte-mediated neurotoxicity. The results presented here demonstrate that Δ133p53α manipulation could modulate cellular senescence in the context of AD, possibly opening new therapeutic avenues.