Neuroscience
-
Ischemic stroke often co-occurs with Alzheimer's disease (AD) leading to a worsened clinical outcome. Neuroinflammation is a critical process implicated in AD and ischemic pathology, associated with cognitive decline. We sought to investigate the combined effects of ischemic stroke induced by endothelin-1 injection in two AD rat models, using motor function, memory and microglial inflammation in the basal forebrain and striatum as readouts. ⋯ Combined transgenic rats showed balance alterations, comorbid Aβ25-35 rats showed a transient sensorimotor deficit, and both demonstrated spatial reference memory deficit. CAT-SKL treatment ameliorated memory impairment and basal forebrain microgliosis in Aβ25-35 rats with stroke. Our results suggest that neuroinflammation could be one of the early processes underlying the interaction of AD with stroke and contributing to the cognitive impairment, and that therapies such as antioxidant CAT-SKL could be a potential therapeutic strategy.
-
Optic neuritis and retinal damage are common manifestations of multiple sclerosis (MS). Pterostilbene (PT) has been used to treat multiple diseases for its anti-inflammatory, anti-apoptosis and neuroprotective activities. This study aimed to investigate whether PT exerts a therapeutic effect on optic neuritis and retinal damage triggered by MS. ⋯ In addition, PT activated SIRT1 signaling in the optic nerves and retina. Notably, EX-527, an inhibitor of SIRT1, reversed the effect of high-dose PT on the optic nerves and retina, indicating that PT exerted the protective effect via activating SIRT1 signaling. This study provides a potential candidate for treating MS.
-
Cerebral ischemia/reperfusion injury is the main cause of neurological deficit following stroke. Pleckstrin homology-like domain, family A, member 1 (PHLDA1) is increasingly recognized as a critical determinant in immunological regulation and cell apoptosis, but its role in neuroinflammation during cerebral ischemia/reperfusion injury remains to be elucidated. In this study, middle cerebral artery occlusion/reperfusion (MCAO/R) in C57BL/6 mice and oxygen-glucose deprivation/reoxygenation (OGD/R) in BV-2 cells were used as models in vivo and in vitro, respectively. ⋯ Moreover, PHLDA1 knockdown suppressed the NLRP3 inflammasome activation by reducing NLRP3, ASC, cleaved caspase 1 and cleaved IL-1β expression. In summary, these results suggest that PHLDA1 blockade effectively alleviates the ischemia/reperfusion-induced cerebral injury by switching microglial M1/M2 polarization and inhibiting NLRP3 inflammasome activation. Targeting PHLDA1 could be considered as a novel strategy in the treatment against post-ischemic brain injury.
-
Thalamocortical dysfunction is thought to underlie the pathophysiology of chronic pain revealed by electroencephalographic studies. The thalamus serves as a primary relay center to transmit sensory information and motor impulses via dense connections with the somatosensory and motor cortex. In this study, diffusion tensor imaging (DTI) (probabilistic tractography) and resting-state functional magnetic resonance imaging (functional connectivity) were used to characterize the anatomical and functional integrity of the thalamo-sensorimotor pathway in chronic low back pain (cLBP). ⋯ Moreover, there was significantly altered resting-state functional connectivity (rsFC) of bilateral thalamo-motor/somatosensory pathways in patients with cLBP as compared to healthy controls. We also detected a significant correlation between pain intensity during the MRI scan and rsFC of the right thalamo-somatosensory pathway in cLBP. Our findings highlight the involvement of the thalamo-sensorimotor circuit in the pathophysiology of cLBP.
-
Although altered microstructure properties of white-matter tracts have been reported in children with attention-deficit/hyperactivity disorder (ADHD), findings from relatively few adult ADHD studies are inconsistent. This study aims to examine microstructural property over the whole brain in adults with ADHD and explore structural connectivities. Sixty-four medication-naïve adults with ADHD and 81 healthy adults received diffusion spectrum imaging. ⋯ Adults with ADHD had increased mGFA values in the segments located in the left frontal aslant tract, the right inferior longitudinal fasciculus, and the left perpendicular fasciculus, and reduced mGFA values in the segments located in the right superior longitudinal fasciculus (SLF) I, the left SLF II, the right frontostriatal tracts from dorsolateral prefrontal cortex and the ventrolateral prefrontal cortex, the right medial lemniscus, the right inferior thalamic radiation to the auditory cortex, and the callosal fibers. Additionally, the mGFA value of the right SLF I segment was associated with hyperactivity-impulsivity symptoms. Our findings suggest that white-matter tracts with altered microstructure properties are located within the attention networks, fronto-striato-thalamocortical regions, and those associated with attention and visual perception in adults with ADHD.