Neuroscience
-
Presbycusis, or age-related hearing loss (ARHL), is primarily associated with sensory or transduction nerve cell degeneration in the peripheral and/or central auditory systems. During aging, the auditory system shows mitochondrial dysfunction and increased inflammatory responses. Mitochondrial dysfunction promotes leakage of mitochondrial DNA (mtDNA) into the cytosol, which activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce type I interferon and inflammatory responses. ⋯ The results showed that cGAS-positive immunoreactive cells were observed in the cochlea, inferior colliculus, and auditory cortex. Levels of cytosolic mtDNA, cGAS, STING, phosphorylated interferon regulatory factor 3, and cytokines were significantly increased in the cochlea, inferior colliculus, and auditory cortex of 6-, 9-, and 12-month-old mice compared with 3-month-old mice. These findings suggested that cytosolic mtDNA may play an important role in the pathogenesis of ARHL by activating cGAS-STING-mediated type I interferon and inflammatory responses.
-
Randomized Controlled Trial
Greater cortical activation and motor recovery following mirror therapy immediately after peripheral nerve repair of the forearm.
Cortical reorganization occurs immediately after peripheral nerve injury, and early sensorimotor training is suggested during nerve regeneration. The effect of mirror therapy and classical sensory relearning on cortical activation immediately after peripheral nerve repair of the forearm is unknown. Six participants were randomly assigned to the mirror-therapy group or the sensory-relearning group. ⋯ All participants showed improvement in the SWM, S-2PD tests, upper extremity function, and grip strength after the intervention at T1, except for the participant who injured both the median and ulnar nerves in the sensory-relearning group. In addition, the mirror-therapy group had better outcomes in finger dexterity and manual dexterity, and fMRIs showed greater activation in the multimodal association cortices and ipsilateral brain areas during motor tasks. This study provides evidence-based results confirming the benefits of early sensorimotor relearning for cortical activation in peripheral nerve injury of the forearm and different neuroplasticity patterns between mirror therapy and classical sensor relearning.
-
Review
Lactate supply from astrocytes to neurons and its role in ischemic stroke-induced neurodegeneration.
Glucose transported to the brain is metabolized to lactate in astrocytes and supplied to neuronal cells via a monocarboxylic acid transporter (MCT). Lactate is used in neuronal cells for various functions, including learning and memory formation. Furthermore, lactate can block stroke-induced neurodegeneration. ⋯ These findings suggest that the lack of lactate supply may strongly contribute to hypoxia-induced neurodegeneration. Furthermore, diminished lactate supply from astrocytes could facilitate stroke-induced neurodegeneration. Therefore, astrocyte-derived lactate may contribute to stroke prevention.
-
Mainstream theories of first and second language (L1, L2) processing in bilinguals are crucially informed by word translation research. A core finding is the translation asymmetry effect, typified by slower performance in forward translation (FT, from L1 into L2) than in backward translation (BT, from L2 into L1). Yet, few studies have explored its neural bases and none has employed (de)synchronization measures, precluding the integration of bilingual memory models with neural (de)coupling accounts of word processing. ⋯ Relative to BT, FT yielded slower responses, higher frontal theta (4-7 Hz) power in an early window (0-300 ms), reduced centro-posterior lower-beta (14-20 Hz) and centro-frontal upper-beta (21-30 Hz) power in a later window (300-600 ms), and lower fronto-parietal connectivity below 10 Hz in the early window. Also, the greater the behavioral difference between FT and BT, the greater the power of the early theta cluster for FT over BT. These results reveal key (de)coupling dynamics underlying translation asymmetry, offering frequency-specific constraints for leading models of bilingual lexical processing.