Neuroscience
-
Most neuroimaging studies investigating autism spectrum disorder (ASD) have focused on static brain function, but ignored the dynamic features of spontaneous brain activities in the temporal dimension. Research of dynamic brain regional activities might help to fully investigate the mechanisms of ASD patients. This study aimed to examine potential changes in the dynamic characteristics of regional neural activities in adult ASD patients and to detect whether the changes were associated with Autism Diagnostic Observation Schedule (ADOS) scores. ⋯ L was positively associated with ADOS_SOCIAL scores. In conclusion, adults with ASD have a wide area of dynamic regional brain function abnormalities. These suggested that dynamic regional indexes might be used as a powerful measure to help us obtain a more comprehensive understanding of neural activity in adult ASD patients.
-
Propofol infusion is processed through the wake-sleep cycle in neural connections, and the ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and synaptic plasticity through its regulation of electric activity in the brain. Here, we explored the potential roles of P2X7R of microglia in propofol-induced unconsciousness. ⋯ Electrophysiological approaches showed that propofol induced a decreased frequency of sEPSCs and an increased frequency of sIPSCs, A-740003 decrease frequency of sEPSCs and sIPSCs and Bz-ATP increase frequency of sEPSCs and sIPSCs under propofol anesthesia. These findings indicated that P2X7R in microglia regulates synaptic plasticity and may contribute to propofol-mediated unconsciousness.
-
Neurogenesis occurs throughout adulthood within the dentate gyrus, and evidence indicates that these new neurons play a critical role in both spatial and social memory. However, a vast majority of past research on adult neurogenesis has involved experiments with captive mice and rats, making the generalizability of results to natural settings questionable. We assessed the connection between adult neurogenesis and memory by measuring the home range size of wild-caught, free-ranging meadow voles (Microtus pennsylvanicus). ⋯ Voles with larger ranges also had significantly higher pyknotic cell densities in the entire GCL + SGZ and in the dorsal GCL + SGZ. These results support the hypothesis that cell proliferation and cell death within the hippocampus are involved with spatial memory formation. However, a marker of neurogenesis (DCX+) was not correlated with range size, suggesting that there may be selective cellular turnover in the dentate gyrus when a vole is ranging through its environment.
-
Ginkgo biloba L. leaf extract (GBE) has been added in many commercial herbal formulations such as EGb 761 and Shuxuening Injection to treat cardiovascular diseases and stroke worldwide. However, the comprehensive effects of GBE on cerebral ischemia remained unclear. Using a novel GBE (nGBE), which consists of all the compounds of traditional (t)GBE and one new compound, pinitol, we investigated its effect on inflammation, white matter integrity, and long-term neurological function in an experimental stroke model. ⋯ In vitro analyses showed that nGBE treatment reduced the production of IL-1β and TNFα in primary microglia. Administration of nGBE also decreased the SMI-32/MBP ratio and enhanced myelin integrity, thus exhibiting improved white matter integrity at 28 days post stroke. These findings demonstrate that nGBE protects against cerebral ischemia by inhibiting microglia-related inflammation and promoting white matter repair, suggesting that nGBE is a promising therapeutic strategy for long-term recovery after stroke.
-
Levodopa-induced dyskinesia (LID) is a common motor complication of levodopa (L-DOPA) treatment for Parkinson's disease (PD). In recent years, the role of astrocytes in LID has increasingly attracted attention. ⋯ ONO-2506 delays the emergence of L-DOPA-induced abnormal involuntary movements in the early stage of L-DOPA administration, without affecting the anti-PD effect of L-DOPA. The delaying effect of ONO-2506 on LID may be linked to the increased expression of GLT-1 in the rat striatum. Interventions targeting astrocytes and glutamate transporters are potential therapeutic strategies to delay the development of LID.