Neuroscience
-
Opioid use disorder (OUD) is a major current cause of morbidity and mortality. Long-term exposure to short-acting opioids (MOP-r agonists such as heroin or fentanyl) results in complex pathophysiological changes to neuroimmune and neuroinflammatory functions, affected in part by peripheral mechanisms (e.g., cytokines in blood), and by neuroendocrine systems such as the hypothalamic-pituitary-adrenal (HPA) stress axis. There are important findings from preclinical models, but their role in the trajectory and outcomes of OUD in humans is not well understood. ⋯ The mechanistic roles of these neuroimmune and neuroinflammatory changes in the trajectory of OUD (including recovery and medication management) cannot be examined practically with postmortem data. Collection of longitudinal data in larger-scale human cohorts would allow examination of these mechanisms associated with OUD stage and progression. Given the heterogeneity in presentation of OUD, a precision medicine approach integrating multi-omic peripheral biomarkers and comprehensive phenotyping, including neuroimaging, can be beneficial in risk stratification, and individually optimized selection of interventions for individuals who will benefit, and assessments under refractory therapy.
-
Morphine has a strong analgesic effect and is suitable for various types of pain, so it is widely used. But long-term usage of morphine can lead to drug tolerance, which limits its clinical application. The complex mechanisms underlying the development of morphine analgesia into tolerance involve multiple nuclei in the brain. ⋯ Existing studies show that dopamine receptors and μ-opioid receptors participate in morphine tolerance through the altered activities of dopaminergic and/or non-dopaminergic neurons in the VTA. Several neural circuits related to the VTA are also involved in the regulation of morphine analgesia and the development of drug tolerance. Reviewing specific cellular and molecular targets and related neural circuits may provide novel precautionary strategies for morphine tolerance.