Neuroscience
-
Philippe Ascher spent his last two decades as an emeritus Professor, working in the heart of Paris. Together with his wife Jacsue they were hosted in Alain Marty's laboratory and enjoyed the happiest retirement. ⋯ This period led us from NMDA receptors to the corelease of acetylcholine and glutamate by spinal motoneurons to Renshaw cells and then to the stoichiometric variants of nicotinic acetylcholine receptors. Here I present a brief history of our collaboration during this period.
-
Randomized Controlled Trial
The influence of menstrual phase on synaptic plasticity induced via intermittent theta-burst stimulation.
Ovarian hormones influence the propensity for short-term plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Estradiol appears to enhance the propensity for neural plasticity. It is currently unknown how progesterone influences short-term plasticity induced by rTMS. ⋯ These findings suggest women experience a variable propensity for iTBS-induced short-term plasticity across the menstrual cycle. This information is important for designing studies aiming to induce plasticity via rTMS in women.
-
Sports-related concussion (SRC) in adolescent athletes is associated with an increased risk of subsequent lower extremity injury. Neuromuscular training (NMT) has shown promise for reducing lower extremity injuries following SRC, however, neural adaptations in response to changes in lower extremity biomechanics following NMT in athletes with a history of SRC (HxSRC) remains poorly understood. Therefore, the purpose of this study was to identify changes in neural activity associated with lower extremity movement adaptations following a six-week NMT intervention in athletes with a HxSRC. ⋯ Whole-brain neural correlate analysis revealed that increased cerebellar activity was significantly associated with reduced mean left-knee frontal ROM for matched controls. Exploratory within group analyses identified neural correlates in the postcentral gyrus for the HxSRC group which was associated with reduced mean left-knee frontal plane ROM. These distinct longitudinal changes provide preliminary evidence of differential neural activity associated with NMT to support knee frontal plane control in athletes with and without a HxSRC.
-
Psychiatric disturbances are commonly associated with adult-onset isolated dystonia (AOID); however, the mechanisms underlying psychiatric abnormalities in AOID remain unknown. We aimed to investigate the structural and functional brain changes in AOID patients with anxiety, and identify imaging biomarkers for diagnosing anxiety. Structural and functional magnetic resonance was performed on 69 AOID patients and 35 healthy controls (HCs). ⋯ ALFF and ReHo in the ANG. L exhibited an ROC AUC of 0.904 and 0.851, respectively, in distinguishing AOID patients with anxiety from those without and an ROC AUC of 0.887 and 0.853, respectively, in distinguishing AOID patients with anxiety from HCs. These findings provide new insights into the pathophysiology of psychiatric disturbances and highlight potential candidate biomarkers for identifying anxiety in AOID patients.
-
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disease that leads to substantial loss of quality of life. Therapies currently available for AD do not modify the disease course and have limited efficacy in symptom control. ⋯ Entropy, a novel analysis for better understanding the nonlinear nature of neurophysiological data, has demonstrated consistent accuracy in disease detection. This literature review characterizes the use of entropy-based analyses from functional neuroimaging tools, including electroencephalography (EEG) and magnetoencephalography (MEG), in patients with AD for disease detection, therapeutic response measurement, and providing clinical insights.