Neuroscience
-
Levodopa-induced dyskinesia (LID) is a common motor complication of levodopa (L-DOPA) treatment for Parkinson's disease (PD). In recent years, the role of astrocytes in LID has increasingly attracted attention. ⋯ ONO-2506 delays the emergence of L-DOPA-induced abnormal involuntary movements in the early stage of L-DOPA administration, without affecting the anti-PD effect of L-DOPA. The delaying effect of ONO-2506 on LID may be linked to the increased expression of GLT-1 in the rat striatum. Interventions targeting astrocytes and glutamate transporters are potential therapeutic strategies to delay the development of LID.
-
Gastrointestinal (GI) disorders are widely recorded in autism spectrum disorder (ASD), and ASD with GI symptoms is a vital subtype of this disease. Growing evidence suggests altered gut microbiota biomarkers in ASD, but little is known about the gut microbiota of individuals with ASD with GI Symptoms, particularly in early childhood. In our study, the gut microbiota of 36 individuals with ASD along with GI symptoms and 40 typically developing (TD) children were compared using 16S rRNA gene sequencing. ⋯ Furthermore, we constructed a Support Vector Machine classification model, which robustly discriminated individuals with ASD and GI symptoms from TD individuals in a validation set (AUC = 0.88). Our findings provide a deep insight into the roles of the disturbed gut ecosystem in individuals with ASD and GI symptoms aged 3-6 years. Our classification model supports gut microbiota as a potential biomarker for the early identification of ASD and interventions targeting particular gut-beneficial microbiota.
-
Stress can be categorized according to physical, psychological and social factors. Exposure to stress produces stress-induced hypersensitivity and forms negative emotions such as anxiety and depression. For example, acute physical stress induced by the elevated open platform (EOP) causes prolonged mechanical hypersensitivity. ⋯ Mechanistically, EOP exposure mainly altered evoked excitatory postsynaptic currents such as input-output and paired pulse ratio. Intriguingly, the mice exposed in the EOP also produced low-frequency stimulation induced short-term depression on excitatory synapses in the ACC. These results suggest that the ACC plays a critical role in the modulation of stress-induced mechanical hypersensitivity, possibly through synaptic plasticity on excitatory transmission.
-
Dynamical, causal, and cross-frequency coupling analysis using the electroencephalogram (EEG) has gained significant attention for diagnosing and characterizing neurological disorders. Selecting important EEG channels is crucial for reducing computational complexity in implementing these methods and improving classification accuracy. In neuroscience, measures of (dis) similarity between EEG channels are often used as functional connectivity (FC) features, and important channels are selected via feature selection. ⋯ Our analysis shows significant differences in FC between bipolar channels of the occipital region and other regions (i.e. parietal, centro-parietal, and fronto-central) between AD and HC groups. Furthermore, our results indicate that FC changes between channels along the fronto-parietal region and the rest of the EEG are important in diagnosing AD. Our results and its relation to functional networks are consistent with those obtained from previous studies using fMRI, resting-state fMRI and EEG.
-
The human brain presents a heavily connected complex system. From a relatively fixed anatomy, it can enable a vast repertoire of functions. One important brain function is the process of natural sleep, which alters consciousness and voluntary muscle activity. ⋯ The results demonstrated that the delta-alpha coupling function was increasing gradually from Awake to NREM3 (non-rapid eye movement), but only during NREM2 and NREM3 deep sleep it was significant in respect of surrogate data testing. The analysis on the spatially distributed connections showed that this significance is strong only for within the single electrode region and in the front-to-back direction. The presented methodological framework is for the whole-night sleep recordings, but it also carries general implications for other global neural states.