Neuroscience
-
Previous studies have shown that in addition to its role within the voltage-gated calcium channel complex in the plasma membrane, the neuronal CaVβ subunit can translocate to the cell nucleus. However, little is known regarding the role this protein could play in the nucleus, nor the molecular mechanism used by CaVβ to enter this cell compartment. This report shows evidence that CaVβ3 has nuclear localization signals (NLS) that are not functional, suggesting that the protein does not use a classical nuclear import pathway. ⋯ Likewise, through proximity ligation assays (PLA), it was found that members of the heterogeneous nuclear ribonucleoproteins (hnRNPs) and B56δ, a regulatory subunit of the protein phosphatase 2A (PP2A), could function as proteins that regulate this piggyback mechanism. On the other hand, bioinformatics and site-directed mutagenesis assays allowed the identification of a functional nuclear export signal (NES) that controls the exit of CaVβ3 from the nucleus, which would allow the completion of the nuclear transport cycle of the protein. These results reveal a novel mechanism for the nuclear transport cycle of the neuronal CaVβ3 subunit.
-
Perinatal hypoxic-ischemic (HI) brain injury leads to mortality and morbidity in neonates and children. There are no effective and practical methods to attenuate this brain injury. This study determined whether desflurane, a volatile anesthetic with limited effect on the cardiovascular system, protected against HI-induced brain damage and the role of transient receptor potential ankyrin 1 (TRPA1), a mediator for simulated ischemia-induced myelin damage, in this protection. ⋯ However, the combination of TRPA1 inhibition and desflurane post-treatment did not preserve brain tissues, learning and memory better than TRPA1 inhibition or desflurane post-treatment alone. Our results suggest that desflurane post-treatment induces neuroprotection against neonatal HI. This effect may be mediated by inhibiting TRPA1.
-
On the dark side of creativity, creative ideation is intentionally used to damage others. This first electroencephalogram (EEG) study on malevolent creativity investigated task-related power (TRP) changes in the alpha band while n = 89 participants (52 women, 37 men) generated original ideas for revenge in the psychometric Malevolent Creativity Test. ⋯ This performance-related, time-sensitive pattern of TRP changes during malevolent creativity may reflect early conceptual expansion from prosocial to antisocial perspectives, and subsequent inhibition of dominant semantic associations in favor of novel revenge ideas. 3) The observed, right-lateralized alpha power increases over the entire ideation phase may denote an additional emotional load of creative ideation. Our study highlights the seminal role of EEG alpha oscillations as a biomarker for creativity, also when creative processes operate in a malevolent context.
-
Exposure to violence during childhood can lead to functional changes in brain regions that are important for emotion expression and regulation, which may increase susceptibility to internalizing disorders in adulthood. Specifically, childhood violence exposure can disrupt the functional connectivity among brain regions that include the prefrontal cortex (PFC), hippocampus, and amygdala. Together, these regions are important for modulating autonomic responses to stress. ⋯ Heart rate and SCL were recorded during each scan. Post-stress heart rate varied negatively with post-stress amygdala-inferior parietal lobule rsFC and positively with post-stress hippocampus-anterior cingulate cortex rsFC among those exposed to high, but not low, levels of violence. Results from the present study suggest that post-stress fronto-limbic and parieto-limbic rsFC modulates heart rate and may underlie differences in the stress response among those exposed to high levels of violence.
-
Sperm associated antigen 6 (Spag6) is the PF16 homolog of Chlamydomonas and participates in the regulation of cilia movement. Studies have shown that Spag6 is expressed in the brain, and its loss will lead to cerebral edema caused by a defect in motor cilium function in ependymal cells. However, it has not been reported whether the limited or extensive cerebral edema resulting from ischemic strokes is related to the expression regulation of Spag6. ⋯ Based on significant changes in PI3K/AKT-mTOR signaling pathway activity after CIS/R determination, we determined that Spag6 regulates the abnormal expression of CIS/R-induced inflammatory factors NF-κB, NLRP3, IL-10, and the autophagy-related proteins Beclin-1, LC3, and P62 by activating the PI3K/AKT-mTOR signaling pathway. This inhibits inflammation and autophagy in the brain tissue. In summary, this study revealed that Spag6 alleviates brain edema damage after CIS/R by maintaining the structural function of the motor cilium, regulating the PI3K/AKT-mTOR signaling pathway, and inhibiting inflammation and autophagy reaction.