Neuroscience
-
Many threats activate parabrachial neurons expressing calcitonin gene-related peptide (CGRPPBN) which transmit alarm signals to forebrain regions. Most CGRPPBN neurons also express tachykinin 1 (Tac1), but there are also Tac1-expressing neurons in the PBN that do not express CGRP (Tac1+;CGRP- neurons). ⋯ Activating Tac1+;CGRP- neurons, using an intersectional genetic targeting approach, resembles activating all Tac1PBN neurons. These results reveal that activation of Tac1+;CGRP- neurons can suppress some functions attributed to the CGRPPBN neurons, which provides a mechanism to bias behavioral responses to threats.
-
Although the mechanisms underlying dystonia are largely unknown, dystonia is often associated with abnormal dopamine neurotransmission. DOPA-responsive dystonia (DRD) is a prototype disorder for understanding dopamine dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of dopamine and alleviated by the indirect-acting dopamine agonist l-DOPA. Although adaptations in striatal dopamine receptor-mediated intracellular signaling have been studied extensively in models of Parkinson's disease, another movement disorders associated with dopamine deficiency, little is known about dopaminergic adaptations in dystonia. ⋯ The D2 dopamine receptor antagonist raclopride also significantly reduced the phosphorylation of ERK; this contrasts with models of parkinsonism in which l-DOPA-induced ERK phosphorylation is not mediated by D2 dopamine receptors. Further, the dysregulated signaling was dependent on striatal subdomains whereby ERK phosphorylation was largely confined to dorsomedial (associative) striatum while the dorsolateral (sensorimotor) striatum was unresponsive. This complex interaction between striatal functional domains and dysregulated dopamine-receptor mediated responses has not been observed in other models of dopamine deficiency, such as parkinsonism, suggesting that regional variation in dopamine-mediated neurotransmission may be a hallmark of dystonia.
-
Sepsis-associated encephalopathy (SAE) is a common neurological complication of sepsis and is characterized by hyperneuroinflammation. NLRP3 inflammasome-mediated pyroptosis can induce an inflammatory cascade response and plays a key role in SAE. TRPV4 is involved in the hyperinflammatory response associated with inflammation; however, whether TRPV4 inhibition might alleviate SAE-related brain damage is still unknown. ⋯ The disruption of BBB integrity in SAE mice was also rescued by HC067047 intervention. Thus, we can conclude that the TRPV4 inhibitor HC067047 could protect against hippocampal cell pyroptosis, which might be due to the attenuation of the NLRP3 inflammasome-mediated pyroptosis pathway caused by ER stress and OS. Our findings suggest a potential preventive role for HC067047 in SAE.
-
The purpose of the study was to investigate the effect of isoflurane postconditioning on neuron injury in MCAO (middle cerebral artery occlusion) rats and its molecular mechanism of affecting autophagy through miR-384-5p/ATG5 (autophagy-related protein 5). HT22 cells (mouse hippocampal neuronal cell line) were exposed to 1.5% isoflurane for 30 min after OGD/R (oxygen-glucose deprivation/reoxygenation). Flow cytometry and CCK-8 kit were used to analyze changes in apoptosis and cell viability. ⋯ TUNEL staining and western blot results confirmed that isoflurane post-conditioning could regulate miR-384-5p and inhibit apoptosis. Immunofluorescence staining and western blot results confirmed that isoflurane post-conditioning inhibited autophagy in MCAO rats. Based on the above results, we speculated that the molecular mechanism of isoflurane post-conditioning to alleviate ischemic neuronal injury may be related to the regulation of miR-384-5p/ATG5-mediated autophagy.
-
Abdominal pain in Crohn's disease (CD) has been known to be associated with changes in the central nervous system. The periaqueductal gray (PAG) plays a well-established role in pain processing. However, the role of PAG-related network and the effect of pain on the network in CD remain unclear. ⋯ The pain score was negatively correlated with the FC of the l/vlPAG with the precuneus, angular gyrus and mPFC in CD patients with abdominal pain. This study implicated the disrupt communication between the PAG and the default mode network (DMN). These findings complemented neuroimaging evidence for the pathophysiology of visceral pain in CD patients.