Neuroscience
-
An absence of reward in chronic stress may impair the reward circuit in the brain, resulting in major depressive disorder (MDD). In a part of chronically stressed individuals, MDD is not present, i.e., there is resilience, implying endogenous anti-depressive mechanisms in the brain. We studied social defeat model mice and analyzed the mRNA maps of the hippocampus from a control group and social defeat (SD)-susceptible and SD-resilient mice using high-throughput sequencing techniques. ⋯ In our study, minocycline inhibited the activation of microglia, thereby improving the depressive state of CSDS mice. In addition, minocycline combined with fluoxetine enhanced the efficacy of fluoxetine. Thus, our results propose the most probable mechanism underlying different responses to CSDS and indicate the potential of a combination of anti-inflammatory drugs and antidepressants in treating refractory depression.
-
Reconsolidation results in the restabilisation, and thus persistence, of a memory made labile by retrieval, and interfering with this process is thought to enable modification or weakening of the original trace. As such, reconsolidation-blockade has been a focus of research aiming to target the maladaptive memories underlying mental health disorders, including post-traumatic stress disorder and drug addiction. Current first-line therapies are not effective for all patients, and a substantial proportion of those for whom therapies are effective later relapse. ⋯ These include factors such as the age and strength of memory, and can broadly be divided into two categories: intrinsic features of the targeted memory itself, and parameters of the reactivation procedure used. With maladaptive memory characteristics inevitably varying amongst individuals, manipulation of the other limitations imposed by procedural variables have been explored to circumvent the boundary conditions on reconsolidation. Although several apparently discrepant results remain to be reconciled and these limitations yet to be truly defined, many studies have produced successful results which encouragingly demonstrate that boundary conditions may be overcome using various proposed strategies to enable translation of a reconsolidation-based intervention to clinical use.
-
According to the correlated transmitter-receptor based structure of the inferior parietal cortex (IPC), this brain area is divided into three clusters, namely, the caudal, the middle and the rostral. Nevertheless, in associating different cognitive functions to the IPC, previous studies considered this part of the cortex as a whole and thus inconsistent results have been reported. Using multiband echo planar imaging (EPI), we investigated the connectivity profile of the middle IPC while forty-five participants performed a task requiring cognitive control. ⋯ At the same time, this cortical area showed negative functional connectivity with both the precuneus cortex, which is resting- state related, and brain areas related to general cognitive functions. That is, the functions of the middle IPC are not accommodated by the traditional categorization of different brain areas i.e. resting state-related or task-related networks and this advanced our hypothesis about modulating cortical areas. Such brain areas are characterized by their negative functional connectivity with parts of the cortex involved in task performance, proportional to the difficulty of the task; yet, their functional associations are inconsistent with the resting state-related cortical areas.
-
The circadian clock can coordinate, regulate and predict physiology and behavior in response to the standard light-dark (LD: 12 h light and 12 h dark) cycle. If we alter the LD cycle by exposing mice to constant darkness (DD: 00 h light and 24 h dark), it can perturb behavior, the brain, and associated physiological parameters. The length of DD exposure and the sex of experimental animals are crucial variables that could alter the impact of DD on the brain, behavior, and physiology, which have not yet been explored. ⋯ Three weeks of restoration was adequate to establish homeostasis in both sexes. To the best of our knowledge, this study is the first of its kind to look at how DD exposure impacts physiology and behavior as a function of sex- and time. These findings would have translational value and may help in establishing sex-specific interventions for addressing DD-related psychological issues.
-
Predictions of incoming words performed during reading have an impact on how the reader moves their eyes and on the electrical brain potentials. Eye tracking (ET) experiments show that less predictable words are fixated for longer periods of times. Electroencephalography (EEG) experiments show that these words elicit a more negative potential around 400 ms (N400) after the word onset when reading one word at a time (foveated reading). ⋯ Our results show that the N400 potential disappear when the reader recognises the sentence. Furthermore, time-frequency analyses show a larger alpha lateralisation and a beta power increase for memory-encoded sentences. This suggests a more distributed attention and an active maintenance of the cognitive set, in concordance to the predictive coding framework.