Neuroscience
-
Parkinson's disease is associated with a progressive loss of substantia nigra pars compacta dopaminergic neurons. The cellular and molecular mechanisms underlying Parkinson's disease neurodegeneration have not been fully determined. Clinical investigations and subacute in vivo studies using the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine have generated some observations suggesting that apoptosis is involved in neurodegeneration; however, this view remains equivocal. ⋯ While the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells were not co-localized with astroglial (GFAP-positive) cells, some apoptotic cells were clearly associated with the activated microglial (macrophage antigen complex-1 and isolectin B(4)-positive) cells suggesting an active process of dead cell removal. In the one-day and seven-day post-treated mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model for Parkinson's disease, marked depression of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and striatum was observed, which was correlated with significant reductions of striatal dopamine content and uptake. These results suggest that initial neuronal apoptosis and morphological changes are involved, at least in part, in the chronic neurodegeneration of mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model for Parkinson's disease.
-
We evaluated the activity of the atypical antipsychotic drug olanzapine on differentiation and gene expression in adult neural precursor cells in vitro. Neural precursors obtained from forebrain subventricular zone (SVZ)-derived neurospheres express a subset (13/24) of receptors known to bind olanzapine at high to intermediate affinities; in contrast, all 24 are expressed in the SVZ. In the presence of 10 nM, 100 nM or 1 microM olanzapine, there is no significant change in the frequency of oligodendrocytes, neurons, GABAergic neurons and astrocytes generated from neurosphere precursors. ⋯ There are no major changes in cytological differentiation in response to the drug; however, at one concentration (10 nM) there is a small but statistically significant increase in the size of glial fibrillary acidic protein-labeled astrocytes derived from neurosphere precursors. In addition, olanzapine apparently modulates expression of one serotonin receptor -- 5HT2A -- in differentiating neurosphere cultures; however, it does not modify expression of several other receptors or schizophrenia vulnerability genes. Thus, olanzapine has a limited influence on differentiation and gene expression in adult neural precursor cells in vitro.
-
Comparative Study
Differential expression of NMDA and AMPA receptor subunits in rat dorsal and ventral hippocampus.
Several studies have demonstrated anatomical and functional segregation along the dorsoventral axis of the hippocampus. This study examined the possible differences in the AMPA and NMDA receptor subunit composition and receptor binding parameters between dorsal and ventral hippocampus, since several evidence suggest diversification of NMDA receptor-dependent processes between the two hippocampal poles. Three sets of rat dorsal and ventral hippocampus slices were prepared: 1) transverse slices for examining a) the expression of the AMPA (GluRA, GluRB, GluRC) and NMDA (NR1, NR2A, NR2B) subunits mRNA using in situ hybridization, b) the protein expression of NR2A and NR2B subunits using Western blotting, and c) by using quantitative autoradiography, c(1)) the specific binding of the AMPA receptor agonist [(3)H]AMPA and c(2)) the specific binding of the NMDA receptor antagonist [(3)H]MK-801, 2) longitudinal slices containing only the cornus ammonis 1 (CA1) region for performing [(3)H]MK-801 saturation experiments and 3) transverse slices for electrophysiological measures of NMDA receptor-mediated excitatory postsynaptic potentials. ⋯ In conclusion, the differences in the subunit mRNA and protein expression of NMDA and AMPA receptors as well as the lower density of their binding sites observed in ventral hippocampus compared with dorsal hippocampus suggest that the glutamatergic function differs between the two hippocampal poles. Consistently, the lower value of the ratio NR2A/NR2B seen in the ventral part would imply that the ventral hippocampus NMDA receptor subtype is functionally different than the dorsal hippocampus subtype, as supported by our intracellular recordings. This could be related to the lower ability of ventral hippocampus for long-term synaptic plasticity and to the higher involvement of the NMDA receptors in the epileptiform discharges, observed in ventral hippocampus compared with dorsal hippocampus.
-
Insulin peptide, acting through tyrosine kinase receptor pathways, contributes to nerve development or repair. In this work, we examined the direction, impact and repertoire of insulin signaling in vivo during peripheral nerve regeneration in rats. First, we demonstrated that insulin receptor is expressed on lumbar dorsal root ganglia neuronal perikarya using immunohistochemistry. ⋯ Intrathecal insulin delivery was associated with greater recovery of thermal sensation and longer distances to stimulus response with the pinch test following sural nerve crush. Insulin signaling at neuron perikarya can drive distal sensory axon regrowth, rescue retrograde alterations of axons and alter axon peptide expression. Moreover, such actions are associated with upregulation of its own receptor.
-
A local elevation of H+-ion concentrations often occurs in inflammation and usually evokes pain by excitation of primary nociceptive neurons. Expression patterns and functional properties of the capsaicin receptor and acid-sensing ion channels suggest that they may be the main molecular substrates underlying this proton sensitivity. Here, we asked how the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) contribute to the proton response in subpopulations of nociceptive neurons from adult rats and mice (wildtype C57/Bl6, Balb/C and TRPV1-null). ⋯ Together these findings indicate that there are significant differences between rat and mouse in the contribution of TRPV1 and ASIC subunits to proton sensitivity of sensory neurons. In both species ASIC subunits are more prevalent in the isolectin B4-negative neurons, some of which may represent thin myelinated nociceptors. However, the main acid-sensor in isolectin B4-positive and isolectin B4-negative unmyelinated nociceptors in mice is TRPV1.