Neuroscience
-
The aim of the study was to evaluate the effect of tonic muscle pain evoked by injection of 5% hypertonic saline in the right brachioradialis muscle on the somatosensory sensation of laser-evoked heat pain and laser-evoked potentials. The heat pain pathways were studied in 9 healthy human subjects by recording the scalp potentials evoked by CO(2) laser stimuli delivered on four sites: the skin above the right brachioradialis muscle (ipsilateral local pain), the wrist area where muscle pain was referred in all subjects (ipsilateral referred pain), and two areas on the left arm symmetrical to both local and referred pain (contralateral local pain and contralateral referred pain). Laser-evoked potentials were obtained from 31 scalp electrodes before saline injection, during saline infusion (bolus injection with 0.3 ml saline infused over 20 s, followed by a steady infusion rate of 30 ml/h for the next 25 min), and 20 min after muscle pain had disappeared. ⋯ On the contrary, muscle pain did not show any effect on both laser-evoked pain and laser-evoked potential amplitude when the contralateral referred pain site was stimulated. The muscle pain inhibitory effect on both heat pain sensation and laser-evoked potential amplitude is probably mediated by an ipsilateral and contralateral segmental mechanism which acts also on the referred pain area, while more general inhibitory mechanisms, such as a distraction effect or a diffuse noxious inhibitory control, are excluded by the absence of any effect of muscle pain on laser-evoked pain and laser-evoked potentials obtained from a remote site, such as the contralateral referred pain area. Since muscle pain induced by hypertonic saline injection is very similar to clinical pain, our results can be useful in understanding the pathophysiology of the somatosensory modifications which can be observed in patients with musculoskeletal pain syndromes.
-
Comparative Study
Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala.
Substantial experimental evidence exists suggesting a critical role for dopamine in reinforcer-related processes, such as learning and drug addiction. Dopamine receptors, and in particular D1 receptors, are widely considered as modulators of synaptic plasticity. The amygdala contains both dopamine terminals and dopamine D1 receptors and is intimately involved in motivation and learning. ⋯ Control experiments indicated that basic motivational processes and general motor responses were intact, such as spontaneous feeding and locomotor activity. These results show an essential role for D1-receptor activation in both the central nucleus and basolateral complex on the acquisition of lever pressing for sucrose pellets in rats, but not the performance of the behavior once conditioned. We propose that instrumental learning is dependent on plasticity in the central nucleus and basolateral complex amygdala, and that D1 receptor activation participates in transcriptional processes that underlie this plasticity.
-
Transgenic mice ectopically expressing nerve growth factor in oligodendrocytes have high levels of nerve growth factor immunoreactivity in the white matter of the spinal cord from birth until 2 months of age. The nerve growth factor over-expression leads to the appearance of ectopic substance P containing sensory fibers in the white matter of the spinal cord that persist throughout the life of the animal. These transgenic mice have been found to display hypersensitivity to a thermal stimulus following a sensitizing pinch stimulus known to release endogenous substance P. ⋯ Furthermore, we detected immunoreactivity for the mu-opioid receptor in the ectopic fibers, where it was co-localized with endomorphin-2 immunoreactivity. In the superficial dorsal horn, there were no apparent differences in the distribution and intensity of mu-opioid receptor immunoreactivity between wild type and transgenic animals. Taken together, these data could provide an explanation for the enhanced effect of opioid analgesics in transgenic mice, when compared with control mice, as well as provide the basis for studies of the postnatal development of the hyperalgesia and allodynia demonstrated by these animals.
-
Somatostatin, widely distributed in human cortical brain regions, acts through specific high affinity somatostatin receptors (SSTR1-5) to exert profound effects on motor, sensory, behavioral, cognitive and autonomic functions. Somatostatin levels are consistently decreased in the cortex of Alzheimer's disease (AD) brain and in cerebrospinal fluid, and have become reproducible markers of this disease. In the present study, the distributional pattern of SSTR1-5 antigens in the frontal cortex of AD and age-matched control brains was studied using antipeptide polyclonal rabbit antibodies directed against the five human somatostatin receptor subtypes. ⋯ In AD cortex, SSTR1-, 3- and 4-like immunoreactivities were strongly expressed in glial cells but not SSTR2 and 5. These findings suggest the differential loss of immunoreactivity of SSTR2, 4 and 5 but not SSTR1, and increased SSTR3 in frontal cortex of AD brain as well as subtype-selective glial expression in AD brain. In summary, subtype-selective changes in the expression of SSTRs at protein levels in AD cortical regions suggest that somatostatin and SSTR-containing neurons are pathologically involved in AD and could possibly be used as markers of this disease.
-
The present study was conducted to test the hypothesis that the peripheral 5-hydroxytryptamine (5-HT)2A receptor is involved in inflammatory hyperalgesia and production of noxious stimulus-induced neuronal activity at the level of the spinal cord dorsal horn. Intraplantar (i.pl.) injection of carrageenan dramatically reduced paw withdrawal latency to noxious heat (47 degrees C) and caused paw swelling. Pretreatment with ketanserin, a selective antagonist of 5-HT2A receptor, in the hindpaw produced dose-dependent inhibition of the hyperalgesia (0.5, 3 and 5 mug; i.pl.) with full relief at 5 mug. ⋯ Ketanserin (5 mug) markedly reduced carrageenan-induced FLI in all laminae of the dorsal horn. However, blockade of peripheral 5-HT1A receptors by (N-2-[4-(2-methoxyphenyl-1-piperazinyl] ethyl]-N-2-pyridinylcyclohexanecarboxamide at maximally effective doses (30 and 100 mug; i.pl.) did not alter carrageenan-induced hyperalgesia, edema or expression of FLI. The present study provided evidence at cellular level that the peripheral 5-HT2A receptor is preferentially involved in the development of thermal hyperalgesia in the carrageenan model of inflammation.