Neuroscience
-
Synaptosomal-associated protein, 25 kD, (SNAP-25) is a novel protein containing a possible transition metal binding site and encoded by a neuronal-specific mRNA. We examined the distribution of SNAP-25 mRNA and protein in the hippocampal formation of the adult rat following kainic acid, colchicine, and entorhinal lesions. The results show that destruction of granule cells of the dentate gyrus and CA3 pyramidal cells did not diminish SNAP-25 immunoreactivity in the dendritic fields of these cells. ⋯ These results support the identification of SNAP-25 as a novel presynaptic protein. In addition, SNAP-25 immunoreactivity was increased in afferent fibers which project to areas adjacent to the deafferented region, and expression of SNAP-25 mRNA was increased in neurons deafferented by the lesion. Examination of SNAP-25 immunoreactivity and mRNA expression may provide a useful marker of major hippocampal pathways and of axonal plasticity in neurological disorders such as Alzheimer's disease and temporal lobe epilepsy.
-
Comparative Study
Characterization and regional distribution of strychnine-insensitive [3H]glycine binding sites in rat brain by quantitative receptor autoradiography.
Recent evidence suggests that a strychnine-insensitive glycine modulatory site is associated with the N-methyl-D-aspartate receptor-channel complex. A quantitative autoradiographic method was used to characterize the pharmacological specificity and anatomical distribution of strychnine-insensitive [3H]glycine binding sites in rat brain. [3H]Glycine binding was specific, saturable, reversible, pH and temperature-sensitive and of high affinity. [3H]Glycine interacted with a single population of sites having a KD of approximately 200 nM and a maximum density of 6.2 pmol/mg protein (stratum radiatum, CA1). Binding exhibited a pharmacological profile similar to the physiologically defined strychnine-insensitive glycine modulatory site. ⋯ The distribution of strychnine-insensitive [3H]glycine binding was heterogeneous with the following rank order of binding densities: hippocampus greater than cerebral cortex greater than caudate-putamen greater than or equal to thalamus greater than cerebellum greater than brain stem. This distribution of binding was correlated with N-methyl-D-aspartate-sensitive [3H]glutamate binding (r2 = 0.77; P less than 0.001; Pearson product-moment) and [3H]thienylcyclohexylpiperidine binding (r2 = 0.72; P less than 0.001). These observations are consistent with the hypothesis that the strychnine-insensitive glycine binding site is closely associated with the N-methyl-D-aspartate receptor-channel complex.(ABSTRACT TRUNCATED AT 400 WORDS)
-
The regional, cellular and subcellular distribution of GABA, GABA receptors and benzodiazepine receptors was investigated by light and electron microscopy in the human lumbar spinal cord taken post-mortem from eight cases aged 20-76 years. Firstly, the regional distribution of GABA receptors and benzodiazepine receptors was studied using autoradiography following in vitro labelling of cryostat sections with tritiated ligands. This was followed by a detailed study of the cellular and subcellular distribution and localization of GABA and benzodiazepine/GABAA receptors by light and electron microscopy using immunohistochemical techniques with monoclonal antibodies to GABA and to the alpha and beta subunits of the benzodiazepine/GABAA receptor complex. ⋯ Benzodiazepine/GABAA receptors were localized within the same types of synaptic complexes in which GABA-immunoreactive axon terminals were found. In these synaptic complexes, benzodiazepine/GABAA receptor immunoreactivity was associated with presynaptic and postsynaptic membranes and on apparent non-synaptic membranes. These results show a high concentration of GABA, GABA receptors and benzodiazepine receptors in lamina II of the dorsal horn of the human spinal cord and suggest a possible role for GABA in spinal sensory functions.
-
[3H]GABA quantitative autoradiography was used to examine the binding kinetics and regional distribution of GABAB receptors in rat brain. The regional distribution was compared to that of GABAA receptors. At 4 degrees C, [3H]GABA binding to GABAB receptors reached equilibrium within 45 min. ⋯ Areas high in GABAB binding included the medial and lateral geniculates, the superior colliculus and certain amygdaloid nuclei. Binding to white matter tracts and ventricles was negligible. The distribution of GABAB receptors was in agreement with previously postulated sites of action of baclofen.
-
Effects of senna on the myenteric plexus of the colon were investigated in view of earlier reports that this anthraquinone cathartic depletes the plexus of its intrinsic neurons. Rats and mice were given purgative doses of sennosides in their drinking water for 4 and 5 months, respectively. Body growth was reduced, and the weight of the colon with its contents was increased relative to the weight of the whole body in the treated animals. ⋯ Treatment with senna was not associated with absence of neuronal somata or fibres stainable with any of the antisera in either species. Thus, there was no evidence of toxic destruction of any identifiable population of neurons that might have been too small to affect the total counts. We conclude that senna does not kill myenteric neurons in the colon of the rat or mouse.