Neuroscience
-
Stress is triggered by a threatening event that alters the regulation of emotion, behavior, and cognition. The effects of stress on memory in animal models are well-documented. Firstly, this study aimed to determine whether the repeated forced swim stress (FSS) protocol induces memory impairment comparable to single prolonged stress (SPS) in the Y-maze test. ⋯ Mice underwent a Y-maze test, after which they were euthanized, and hippocampal samples were collected. (p-ClPhSe)2 pretreatment protected against the reduction in time spent in the novel arm by mice subjected to FSS. Repeated FSS exposure increased hippocampal protein levels of NMDAR subunits 2A, 2B, and EAAT1 compared to controls. (p-ClPhSe)2 pretreatment prevented this increase. In conclusion, (p-ClPhSe)2 mitigated stress-induced memory impairment in FSS-exposed mice, normalizing hippocampal NMDAR 2A, 2B, and EAAT1 protein levels.
-
Obesity and drugs of abuse share overlapping neural circuits and behaviors. Silent synapses are transient synapses that are important for remodeling brain circuits. They are prevalent during early development but largely disappear by adulthood. ⋯ Using a dietary-induced obesity paradigm, mice that chronically consumed high fat diet (HFD) exhibited increased silent synapses in both direct and indirect pathway medium spiny neurons in the dorsolateral striatum. Both the time of onset of increased silent synapses and their normalization upon discontinuation of HFD occurs on an extended time scale compared to drugs of abuse. These data demonstrate that chronic consumption of HFD, like drugs of abuse, can alter mechanisms of circuit plasticity likely facilitating neural reorganization analogous to drugs of abuse.
-
Essential tremor with resting tremor (rET) and tremor-dominant Parkinson's disease (tPD) share many similar clinical symptoms, leading to frequent misdiagnoses. Functional connectivity (FC) matrix analysis derived from resting-state functional MRI (Rs-fMRI) offers a promising approach for early diagnosis and for exploring FC network pathogenesis in rET and tPD. However, methods relying solely on a single connection pattern may overlook the complementary roles of different connectivity patterns, resulting in reduced diagnostic differentiation. ⋯ Compared with single-pattern GCN, our proposed MCGCN model demonstrated superior classification accuracy, underscoring the advantages of integrating multiple connectivity modes. Specifically, the model achieved an average accuracy of 88.0% for distinguishing rET from HC, 88.8% for rET from tPD, and 89.6% for tPD from HC. Our findings indicate that combining graph convolutional networks with multi-connection patterns can not only effectively discriminate between tPD, rET, and HC but also enhance our understanding of the functional network mechanisms underlying rET and tPD.
-
While mounting evidence suggests that scalp acupuncture (SA) may be effective in alleviating neurological deficits in patients with acute ischemic stroke (IS), its effect on remote hippocampal damage in acute IS and the underlying mechanisms remain elusive. Thus, proteomics analysis was conducted to identify potential targets of SA therapy in acute IS. SA significantly reduced cerebral infarct volume and attenuated neuronal damage in the ischemic penumbra and hippocampus, as well as alleviated neurological deficits in rats with middle cerebral artery occlusion (MCAO). ⋯ Proteomic analysis suggested that this effect is related to the modulation of the acute inflammatory response. SA attenuated remote hippocampal damage after IS by inhibiting microglia activation and neuroinflammation. Lastly, Kng1, Brd9, and Magl were identified as potential targets that mediate the anti-inflammatory effects of SA.
-
With the increased availability and sophistication of digital devices in the last decade, young people have become mainstream mobile phone users. Heavy mobile phone dependence causes affective problems (depression, anxiety) and loss of attention on current activities, leading to more cluttered thoughts. Problematic mobile phone use has been found to increase the occurrence of mind wandering, but the neural mechanism underlying this relationship remains unclear. ⋯ FC between the frontoparietal and motor networks, between the default mode network and cerebellar network, and within the cerebellar network mediated the relationship between mobile phone addiction and mind wandering. The findings confirm that mobile phone addiction is a risk factor for increased mind wandering and reveal that FC in several brain networks underlies this relationship. They contribute to research on behavioral addiction, education, and mental health among young adults.